ENGINE FUEL & EMISSION CONTROL SYSTEM

CONTENTS

PRECAUTIONS	EF & EC-	· 3
ENGINE AND EMISSION CONTROL PARTS LOCATION .	EF & EC-	4
ECC.S. DIAGRAM	EF&EC-	5
ECCS CHART	EF & EC-	• 7
FUEL FLOW SYSTEM DESCRIPTION	EF&EC-	9
AIR FLOW SYSTEM DESCRIPTION	EF & EC-	10
E.C.C.S. CIRCUIT DIAGRAM	EF & EC-	11
EC.CS WIRING DIAGRAM	EF & EC-	12
ECCS DESCRIPTION		
DIAGNOSTIC PROCEDURE	EF & EC-	31
SELF-DIAGNOSIS	EF & EC-	36
ELECTRONIC CONTROL SYSTEM INSPECTION	EF & EC-	52
CRANK ANGLE SENSOR	EF & EC-	54
AIR FLOW METER	EF & EC-	· 56
CYLINDER HEAD TEMPERATURE SENSOR	EF & EC-	- 58
IGNITION SIGNAL	EF & EC-	· 60
FUEL PUMP	EF&EC-	· 62
DETONATION SENSOR	. EF & EC-	64
FUEL TEMPERATURE SENSOR	EF & EC-	66
START SIGNAL	EF & EC-	68
THROTTLE VALVE SWITCH	EF & EC-	· 70
VEHICLE SPEED SENSOR	EF & EC-	· 72
EXHAUST GAS SENSOR	EF & EC-	- 74
INJECTOR	EF & EC-	· 76
POWER SOURCE & GROUND CIRCUIT FOR ECU	EF & EC-	· 78
AIV CONTROL SOLENOID VALVE	EF & EC-	80
EGR CONTROL SOLENOID VALVE	EF&EC	82
IDLE-UP SOLENOID VALVE		
A A.C. VALVE	EF & EC-	· 86

EF&EC

Contents (Cont'd)	
NEUTRAL/INHIBITOR SWITCH	. EF & EC- 88
PR CONTROL SOLENOID VALVE	EF & EC- 90
AIR REGULATOR	EF & EC- 92
ECU INPUT/OUTPUT SIGNAL INSPECTION	EF & EC-94
MIXTURE RATIO FEEDBACK SYSTEM INSPECTION .	. EF & EC- 99
FUEL SYSTEM INSPECTION	. EF & EC-105
TURBOCHARGER INSPECTION	EF & EC-108
EVAPORATIVE EMISSION CONTROL SYSTEM	. EF & EC-110
E.G.R SYSTEM INSPECTION .	EF & EC-112
CRANKCASE EMISSION CONTROL SYSTEM	EF & EC-113
A I V. SYSTEM INSPECTION	· EF & EC-114
SERVICE DATA AND SPECIFICATIONS (SDS)	. EF & EC-116

When you read wiring diagrams:

- Read GI section, "HOW TO READ WIRING DIAGRAMS".
- See EL section, "POWER SUPPLY ROUTING" for power distribution circuit.

E.C.U

- Do not disassemble E C C S control unit
- Do not turn diagnosis mode selector forcibly
- Do not disassemble the E C U (the E C C S control unit)
- If a battery terminal is disconnected, the memory will return to the ROM value The ECCS will now start to self-control at its initial value Engine operation can vary slightly when the terminal is disconnected However, this is not an indication of a problem. Do not replace parts because of a slight variation

WIRELESS EQUIPMENT

- When installing C B ham radio or a mobile phone, be sure to observe the following as it may adversely affect electronic control systems depending on its installation location
- 1) Keep the antenna as far as possible away from the electronic control units
- 2) Keep the antenna feeder line more than 20 cm (7 9 m) away from the harness of electronic controls Do not let them run parallel for a long distance
- 3) Adjust the antenna and feeder line so that the standing-wave ratio can be kept smaller
- 4) Be sure to ground the radio to vehicle body

28888

INJECTOR

BATTERY

running

power source

 Do not disconnect injector harness connectors with engine running

Always use a 12 volt battery as

Do not attempt to disconnect

battery cables while engine is

Do not apply battery power directly to injectors

ECC.S PARTS HANDLING

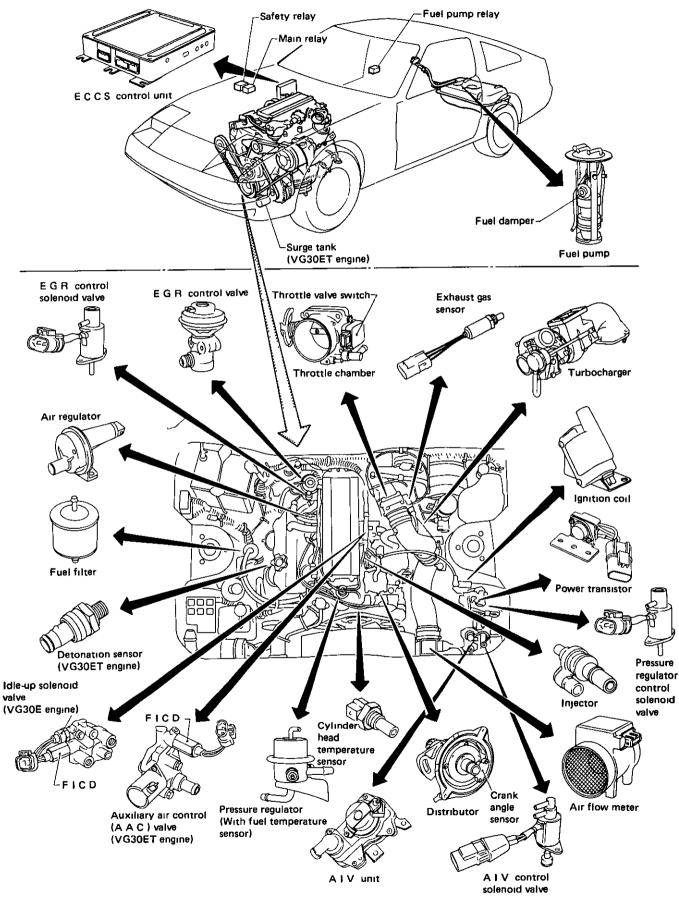
- · Handle air flow meter carefully to avoid damage
- Do not disassemble air flow meter
- Do not clean air flow meter with any type of detergent
- Do not disassemble auxiliary air control valve (VG30ET engine)
- Even a slight leak in the air intake system can cause serious problems
- Do not shock or jar the crank angle sensor

WHEN STARTING

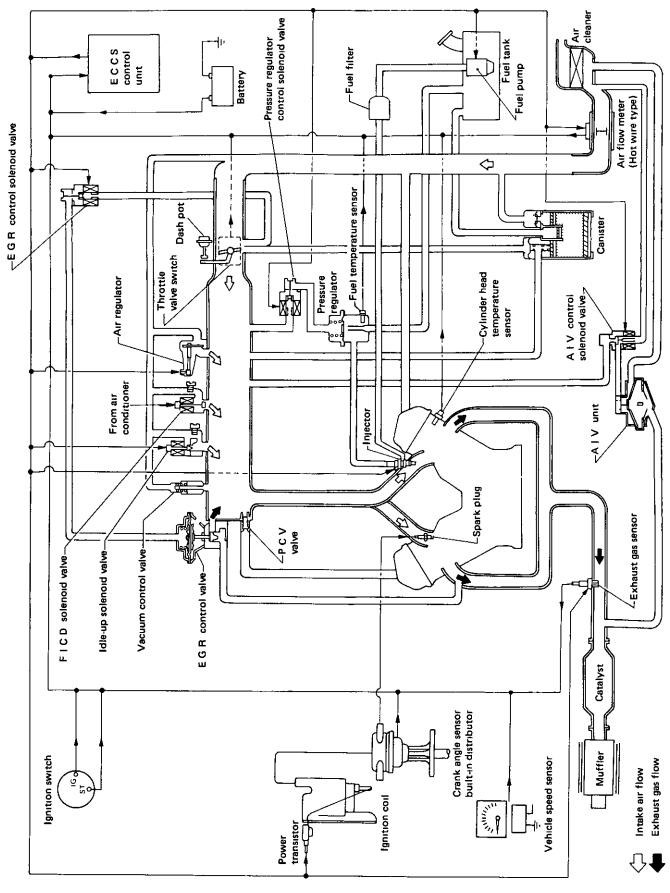
- Do not depress accelerator pedal when starting
- Immediately after starting, do not rev up enigne unnecessarily
- Do not rev up engine just prior to shutdown

FUEL PUMP

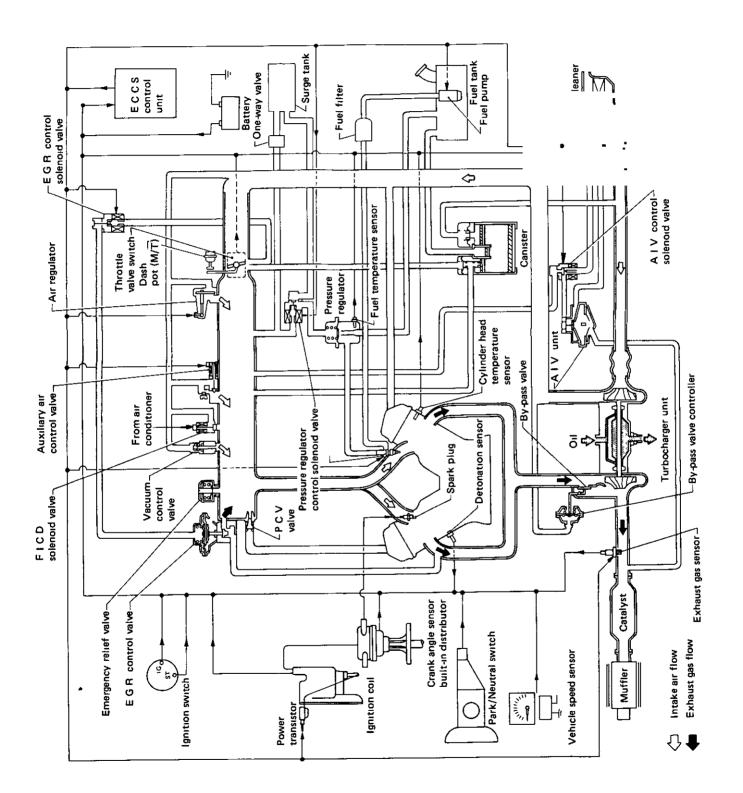
- Do not operate fuel pump when there is no fuel in lines
- Do not reuse fuel hose clamps
- Tighten fuel hose clamps to the specified torque

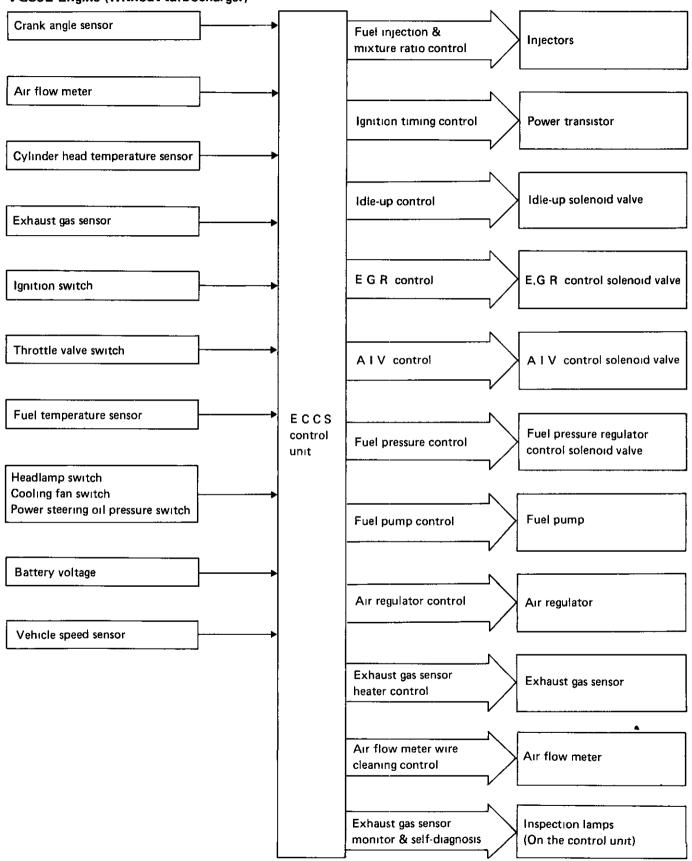

ECCS PARTS HANDLING

- Securely connect E C C S harness connectors A poor connection can cause an extremely high (surge) voltage to develop in coil and condenser, thus resulting in damage to ICs
- Keep E C C S harness at least 10 cm (3.9 in) away from adjacent harnesses, to prevent an E C C S system malfunction due to receiving external noise, degraded operation of ICs, etc.
- Keep E C C S parts and harnesses dry
- Before removing parts, turn off ignition switch and then disconnect battery ground cable

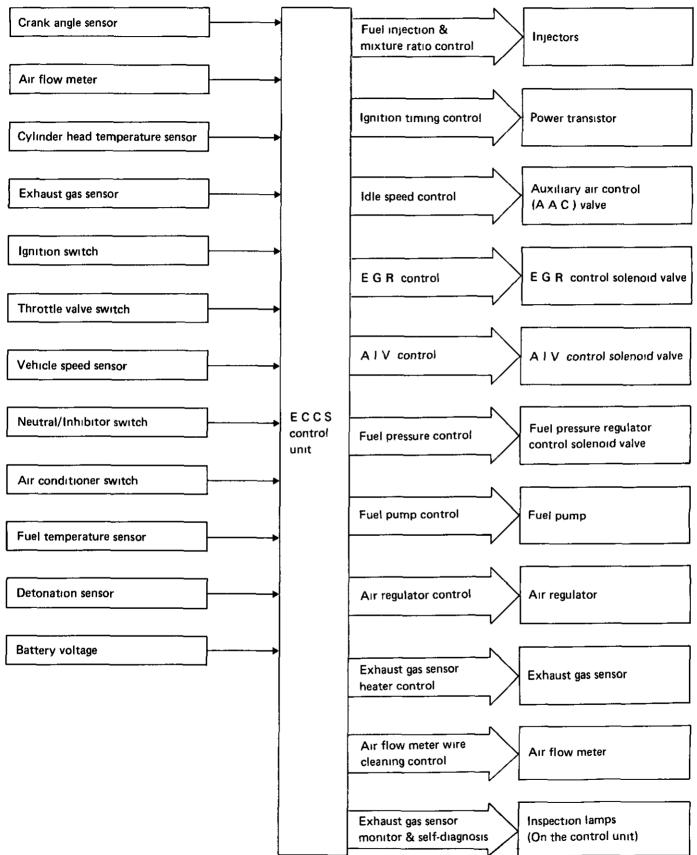

EF & EC-3

SEF179F

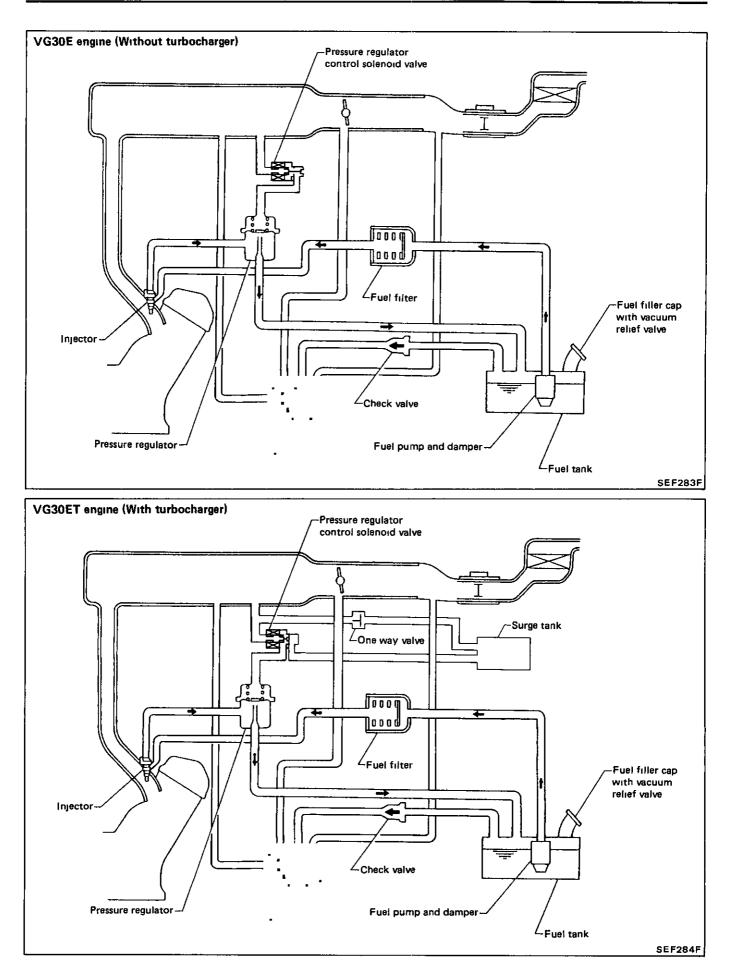

ENGINE AND EMISSION CONTROL PARTS LOCATION


VG30E Engine (Without turbocharger)

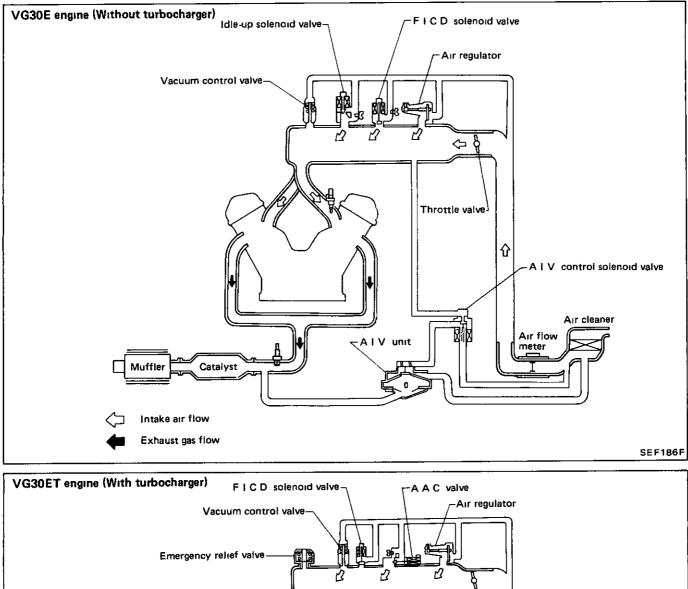
VG30ET Engine (With turbocharger)

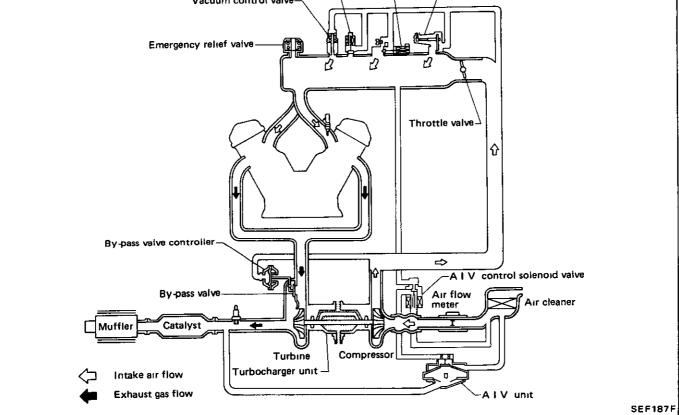


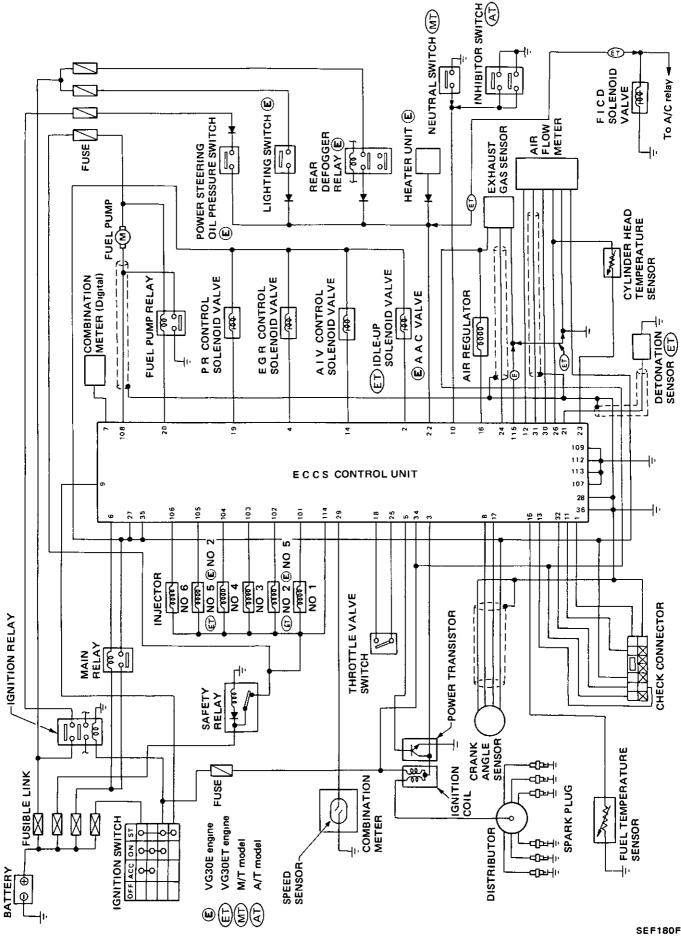
VG30E Engine (Without turbocharger)

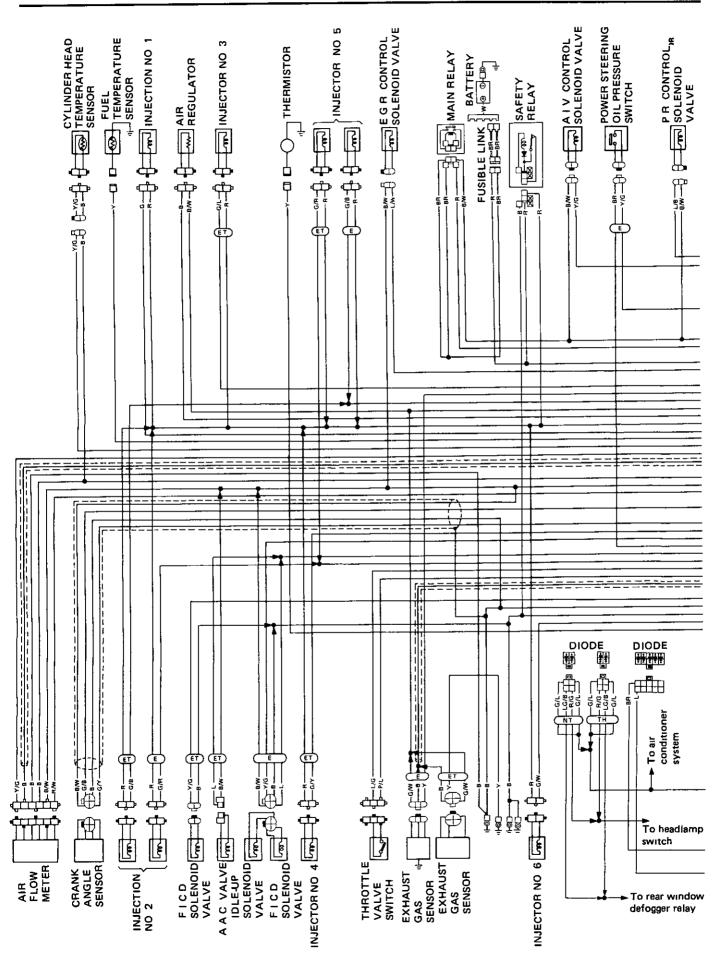


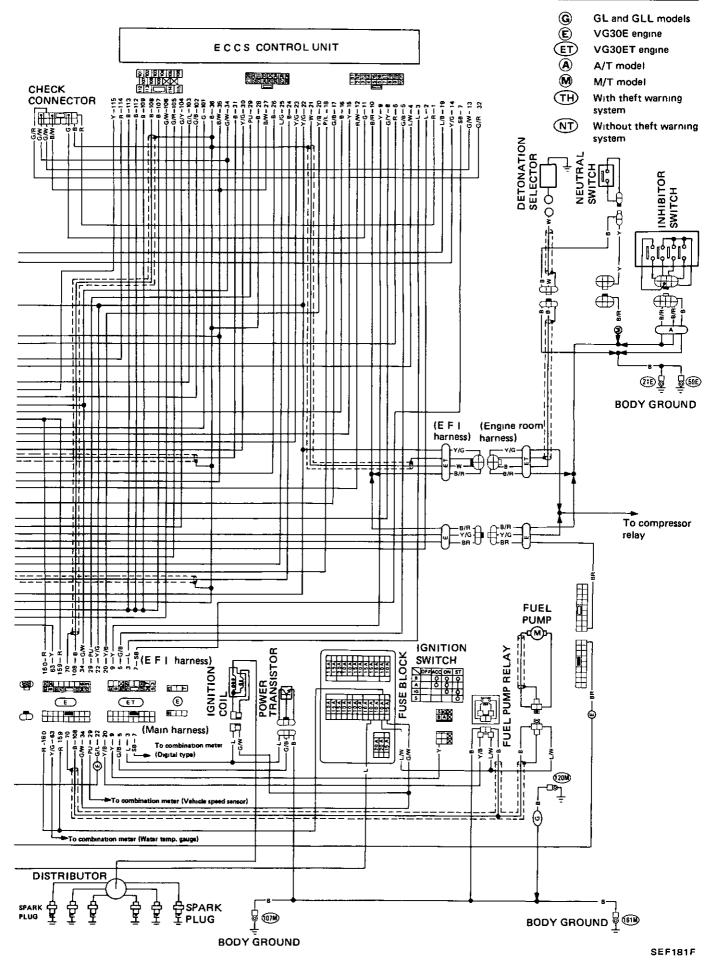
E.C.C.S. CHART

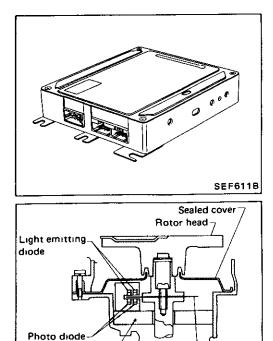

VG30ET Engine (With turbocharger)

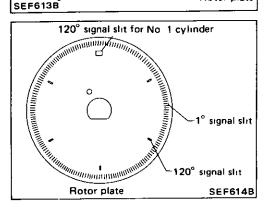


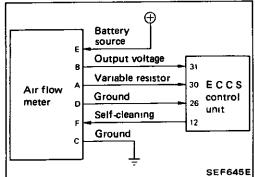

FUEL FLOW SYSTEM DESCRIPTION

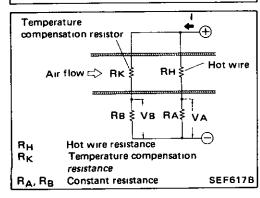

AIR FLOW SYSTEM DESCRIPTION








E.C.C.S. WIRING DIAGRAM



Wave Rotor plate

Components

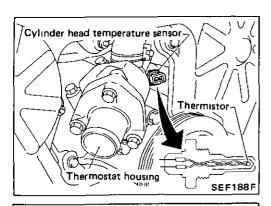
E.C.U. (E.C.C.S. control unit)

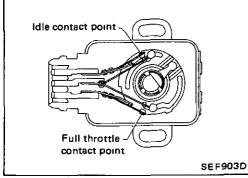
The E C.U consists of a microcomputer, inspection lamps, a diagnostic mode selector, and connectors for signal input and output, and for power supply The unit has control of the engine

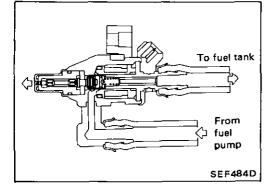
CRANK ANGLE SENSOR

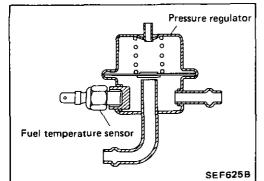
The crank angle sensor is a basic component of the entire ECCS It monitors engine speed and piston position, and sends to the ECU signals on which the controls of fuel injection, ignition timing and other functions are based

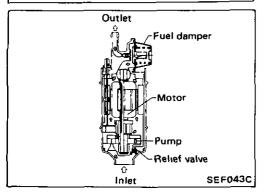
The crank angle sensor has a rotor plate and a wave forming circuit. The rotor plate has 360 slits for 1° signal (crank angle signal) and 6 slits for 120° signal (engine speed signal). Light Emitting Diodes (L E D) and Photo Diodes are built in the wave forming circuit.


When the rotor plate passes the space between the L E D and the Photo Diode, the slits of the rotor plate continually cut the light which is sent to the photo diode from the L E D. This causes generating rough-shaped pulses. They are then converted into on-off pulses by the wave forming circuit, which are sent to the E C U.


AIR FLOW METER


The air flow meter measures the mass flow rate of intake air Measurements are made in such a manner that the control circuit emits an electrical output signal in relation to the amount of heat dissipated from the hot wire placed in the stream of intake air


The air flowing around the hot wire removes the heat from the hot wire. The temperature of the hot wire is very sensitive to the mass flow rate of the air. The higher the temperature of the hot wire, the higher its resistance value. This change in the temperature (or resistance) is determined by the mass flow rate of the air. The control circuit accurately regulates current (I) in relation to the varying resistance value (R_H) so that V_A always equals V_B . The air flow meter transmits an output for voltage V_A to the control unit where the output is converted into an intake air signal.


Also, this air flow meter has self-burning off system in order to make hot wire clean.

Components (Cont'd)

CYLINDER HEAD TEMPERATURE SENSOR

The cylinder head temperature sensor, built into the cylinder head, monitors changes in cylinder head temperature and transmits a signal to the E C U

The temperature sensing unit employs a thermistor which is sensitive to the change in temperature. Electrical resistance of the thermistor decreases in response to the temperature rise

THROTTLE VALVE SWITCH

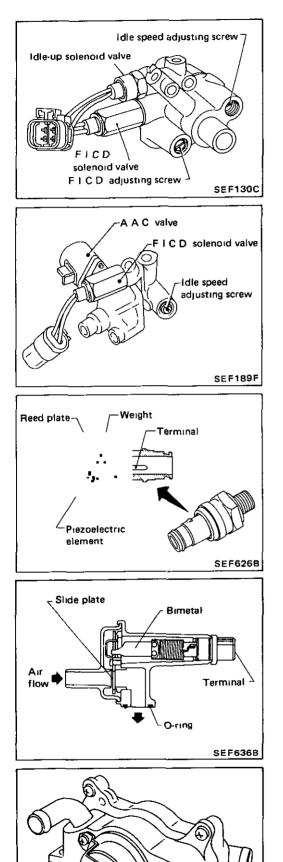
The throttle valve switch is attached to the throttle chamber and actuates in response to accelerator pedal movement

This switch has idle contact and full throttle contact. The idle contact is used for engine control. It closes when the throttle valve is positioned at idle, and opens when it is at any other position.

FUEL INJECTOR

The fuel injector is a small, precision solenoid valve As the E C U. outputs an injection signal to each fuel injector, the coil built into the injector pulls the needle valve back, and fuel is injected through the nozzle to intake manifold. The amount of fuel injected is controlled by the E.C.U. as an injection pulse duration.

FUEL TEMPERATURE SENSOR


The fuel temperature sensor is built into the pressure regulator, and senses fuel temperature. When the fuel temperature is higher than the specified level, the E C U enriches fuel injected.

Do not remove fuel temperature sensor from pressure regulator. Always replace as an assembly.

FUEL PUMP

The fuel pump with a fuel damper is an in-tank type, that is the pump and damper are located in the fuel tank. The vane rollers are directly coupled to a motor which is cooled by fuel

etc.

SEF937C

Components (Cont'd) IDLE-UP SOLENOID VALVE [VG30E]

The idle-up solenoid valve is attached to the intake collector The solenoid valve actuates to stabilize idle speed when engine load is heavy because of electric load, power steering oil pump,

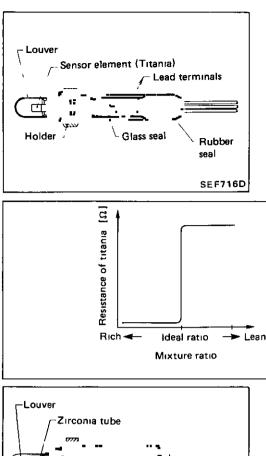
A.A.C. (AUXILIARY AIR CONTROL) VALVE [VG30ET]

The A.A.C. valve is attached to the intake collector. The E.C.U. actuates the A.A.C. valve by an ON/OFF pulse of approximately 160 Hz. The longer that ON duty is left on, the larger the amount of air that will flow through the A.A.C. valve.

DETONATION SENSOR [VG30ET]

The detonation sensor is attached to the cylinder block and senses engine knocking conditions.

A knocking vibration from the cylinder block is applied as pressure to the piezoelectric element. This vibrational pressure is then converted into a voltage signal which is delivered as output

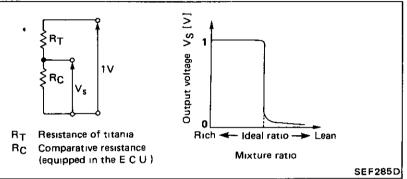

AIR REGULATOR

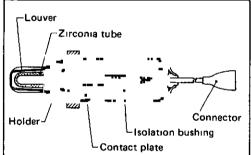
The air regulator provides an air by-pass when the engine is cold for the purpose of a fast idle during warm-up

A bimetal, heater and rotary shutter are built into the air regulator. When the bimetal temperature is low, the air by-pass port is open. As the engine starts and electric current flows through a heater, the bimetal begins to rotate the shutter to close off the by-pass port. The air passage remains closed until the engine is stopped and the bimetal temperature drops.

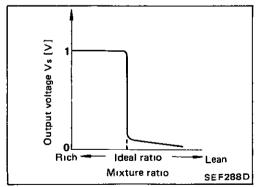
A.I.V. (AIR INJECTION VALVE)

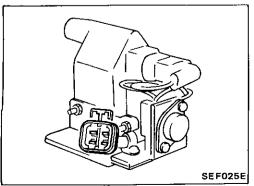
The air injection valve sends secondary air to the exhaust manifold, utilizing a vacuum caused by exhaust pulsation in the exhaust manifold. When the exhaust pressure is below atmospheric pressure (negative pressure), secondary air is sent to the exhaust manifold. When the exhaust pressure is above atmospheric pressure, the reed valves prevent secondary air from being sent back to the air cleaner.


Components (Cont'd)


EXHAUST GAS SENSOR (Titania type) [VG30ET]

The exhaust gas sensor, which is placed in the exhaust tube, monitors the amount of oxygen in the exhaust gas

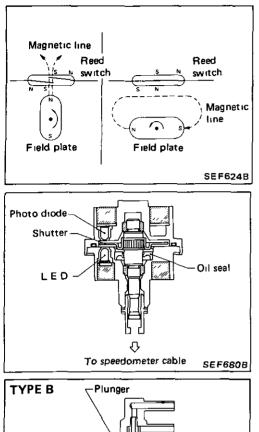

This sensor is made of ceramic titania which electric resistance drastically changes at the ideal air-fuel ratio


The E C U supplies the sensor with approximately 1V and takes an output voltage of the sensor depending on its resistance. In order to activate the sensor element, it is equipped with a heater

SEF336A

EXHAUST GAS SENSOR (Zirconia type) [VG30E]

The exhaust gas sensor, which is placed into the exhaust manifold, monitors the amount of oxygen in the exhaust gas


The sensor has a closed-end tube made of ceramic zirconia The outer surface of the tube is exposed to exhaust gas, and the inner surface to atmosphere. The zirconia of the tube compares the oxygen density of exhaust gas with that of atmosphere, and generates electricity. In order to improve generating power of the zirconia, its tube is coated with platinum. The voltage is approximately 1V in a richer condition of the mixture ratio than the ideal air-fuel ratio, while approximately 0V in leaner conditions. The radical change from 1V to 0V occurs at around the ideal mixture ratio. In this way, the exhaust gas sensor detects the amount of oxygen in the exhaust gas and sends the signal of approximately 1V or 0V to the E C U.

POWER TRANSISTOR AND IGNITION COIL

The ignition signal from the E C U is amplified by the power transistor, which turns the ignition coil primary circuit on and off, inducing the proper high voltage in the secondary circuit

E C.U.

Components (Cont'd) VEHICLE SPEED SENSOR

The speed sensor consists of a reed switch, which is installed in the speed meter unit and transforms vehicle speed into a pulse signal.

Needle type speedometer models

Digital type speedometer models

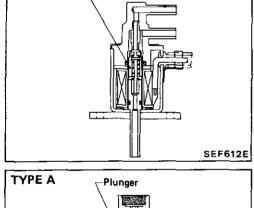
The speed sensor consists of an L E.D., photo diode, shutter and wave forming circuit. Its principle is the same as that of the crank angle sensor

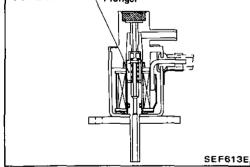
The vehicle speed sensor provides a vehicle speed signal to the

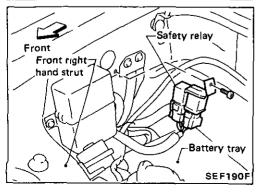
A.I.V. CONTROL SOLENOID VALVE (TYPE B)

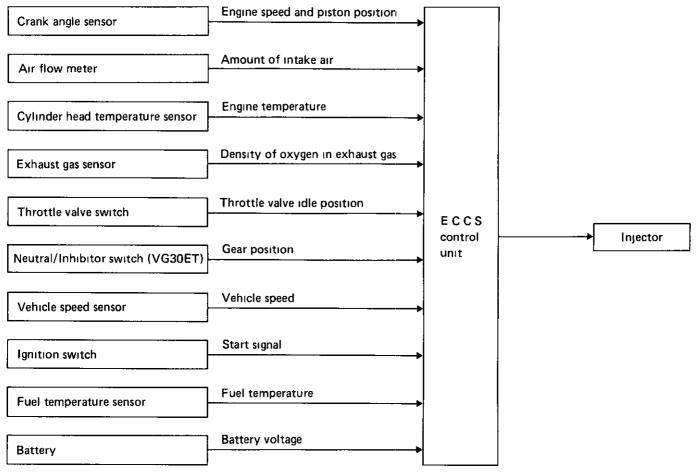
The A I.V control solenoid valve cuts intake manifold vacuum signal for A I V control. The solenoid valve actuates in response to the ON/OFF signal from the E.C.U. When the solenoid is off, the vacuum signal from the intake manifold is cut. As the control unit outputs an ON signal, the coil pulls the plunger downward, and feeds the vacuum signal to the A I V. control valve

E.G.R. CONTROL SOLENOID VALVE (TYPE A)

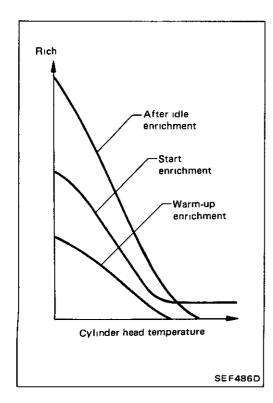

The E G R. system is controlled only by the E C U. At both low and high speed revolution of engine, the solenoid valve turns on and accordingly the E.G R valve cuts the exhaust gas leading to the intake manifold.


P.R. (PRESSURE REGULATOR) CONTROL SOLENOID VALVE (VG30E: TYPE A, VG30ET: TYPE B)

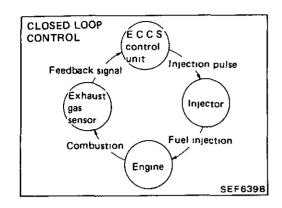

The solenoid valve actuates in response to the ON/OFF signal from the E C U. When it is off, a vacuum signal from the intake manifold is fed into the pressure regulator. As the control unit outputs an ON signal, the coil pulls the plunger downward, and cuts the vacuum signal.


SAFETY RELAY

Safety relay, which is located behind the right side of hoodledge, prevents any damage to the E C U, and injectors when battery terminals are connected in reverse



Fuel Injection Control

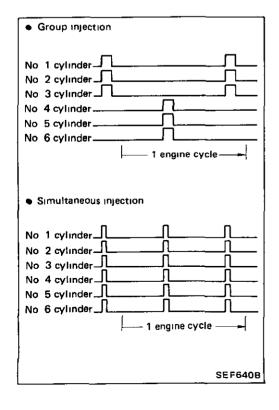

The E.C.U calculates the basic injection pulse width by processing signals from crank angle sensor and air flow meter Receiving signals from each sensor which detects various engine conditions, the E C U. adds various enrichments, which are pre-programmed in the control unit, to the basic injection amount Thus, the optimum amount of fuel is injected through the injectors.

1) Fuel enrichment

In each of the following conditions, fuel is enriched.

- During warm-up
- When starting
- After idle
- With heavy load
- When cylinder head temperature is high.

The enrichment rate for "when accelerating" and "with heavy load" are pre-programmed for engine speed and basic injection pulse width.


Fuel Injection Control (Cont'd)

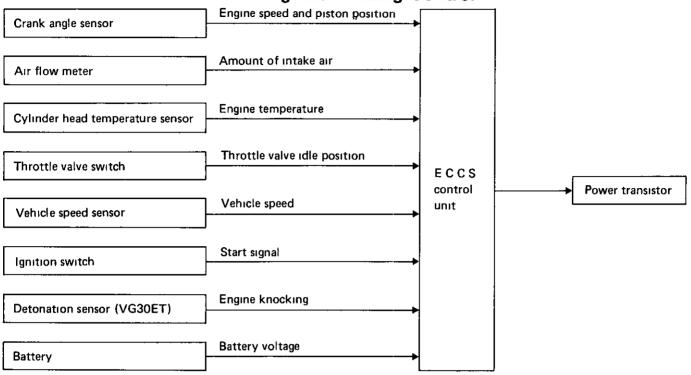
2) Mixture ratio feedback control

The mixture ratio feedback system is designed to control the mixture ratio precisely to the stoichiometric point so that the three-way catalyst can minimize CO, HC and NOx emissions simultaneously. This system uses an exhaust gas sensor located in the exhaust manifold to give an indication of whether the air-fuel ratio is richer or leaner than the stoichiometric point. The control unit adjusts the injection pulse width according to the sensor voltage so the mixture ratio will be within the narrow window around the stoichiometric air fuel ratio.

However, this system will open under the following conditions:

- When starting
- When engine and exhaust gas sensor is cold.
- When driving at high speeds or under heavy load.
- At Idle
- When exhaust gas sensor monitors a too lean condition for more than 10 seconds.
- When fuel shut-off is in operation
- When exhaust gas sensor is malfunctioning
- When pressure regulator control system is in operation

3) Injection timing


Two types of fuel injection systems are used – simultaneous injection and group injection. In the former, fuel is injected into all six cylinders simultaneously twice each engine cycle.

In other words, pulse signals of the same width are simultaneously transmitted from the E.C.U to the six injectors two times for each engine cycle.

In the group injection system, six injectors are divided into two groups - No 1, No. 2, No 3 and No 4, No 5, No. 6. And fuel is injected into each group separately once each engine cycle.

When any of the following conditions are met, fuel injection shifts to simultaneous injection from group injection

- Engine speed is more than 3,000 rpm
- Cylinder head temperature is below 60°C (140°F).
- When starting

Ignition Timing Control

Ignition timing is controlled, corresponding to the engine operating conditions, by the E.C.U. that is, as the optimum ignition timing in each driving condition has been pre-programmed in the control unit, the ignition timing is determined by electrical signals processed in the unit

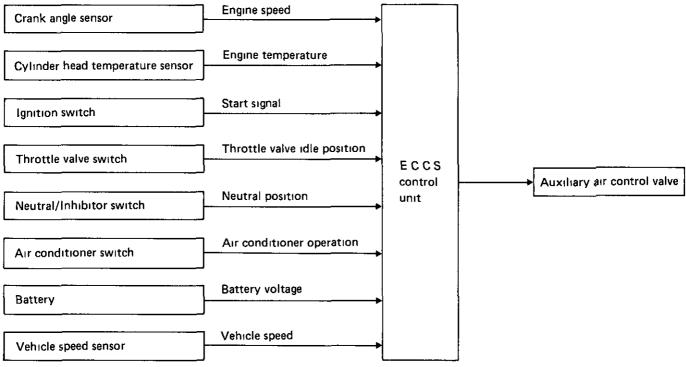
The signal from the E.C.U. is transmitted to power transistor, and controls ignition timing

Detonation feedback operation

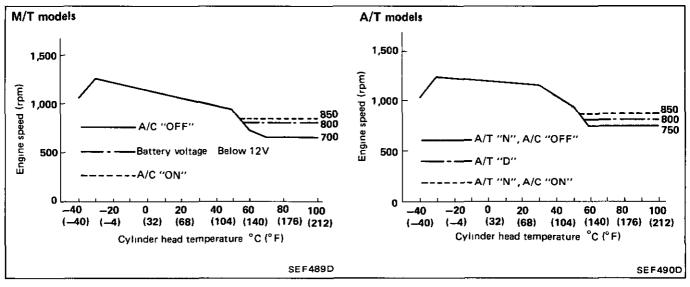
The retard system by detonation sensor is designed only for emergencies on VG30ET engines. The basic ignition timing is pre-programmed within the anti-knocking zone, even if recommended fuel is used under dry conditions Consequently, the retard system does not operate under normal driving conditions.

However, if engine knocking occurs, the detonation sensor monitors the knocking condition and the signal is transmitted to the E.C.U. After receiving it, the control unit retards the ignition timing to avoid the knocking condition.

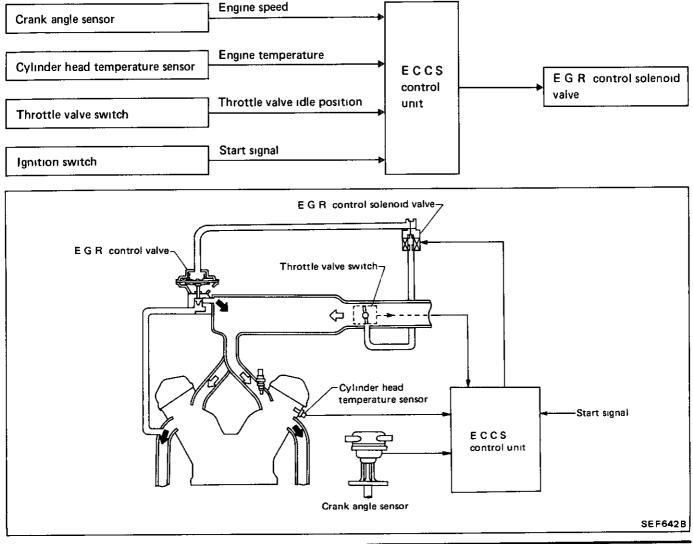
	Idle-up Contra	ol (VG30E	engine)
Crank angle sensor	Engine speed		
Throttle valve switch	Throttle valve idle position		
Ignition switch	Start signal	→ ECCS	
Cylinder head temperature sensor	Engine temperature	control unit	Idle up solenoid valve
Head lamp switch Cooling fan switch Power steering oil pressure switch	Load signal		
Battery	Battery voltage		


Battery Battery Voltage The idle speed is compensated by the E.C.U to

prevent rough idle when any of the following conditions are met.


The control unit senses the idle condition, and determines ON/OFF signal. The signal from the control unit is transmitted to the idle-up solenoid valve to stabilize idle speed.

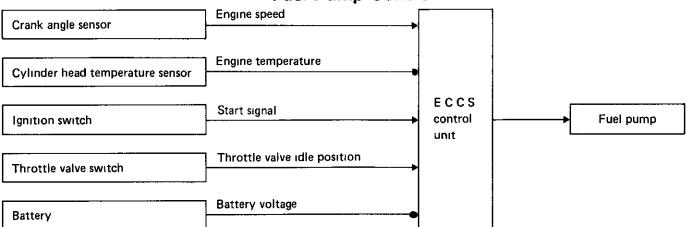
Operation


Condition	Idle-up solenoid operation
During engine start	
20 seconds after engine start	
Battery voltage is below 12V	ON
Headlamp switch ON	
Cooling fan switch ON	
Power steering oil pressure switch ON	
Except above	OFF

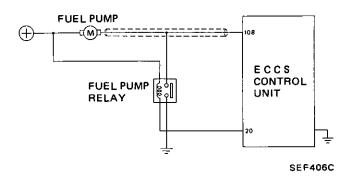
The idle speed is controlled by the E.C.U., corresponding to the engine operating conditions. The E.C.U senses the engine condition and determines the best idle speed at each cylinder head temperature and gear position. The control unit then sends an electronic signal corresponding to the difference between the best idle speed and the actual idle speed to the A.A.C. valve

Idle Speed Control (VG30ET engine)

Exhaust Gas Recirculation (E.G.R.) Control


OPERATION

In the exhaust gas recirculation system, some of the exhaust gas is returned to the combustion chamber to lower the flame temperature during combustion. This results in a reduction of the nitrogen oxide density in the exhaust gas.


When the E.G.R. control valve is open, some of the exhaust gas is led from the exhaust manifold to the E G.R. tube The exhaust gas is then regulated by E.G R. valve, and is introduced into the intake manifold

The signal from the E C.U. is sent to the E.G.R control solenoid valve, which cuts the vacuum line for the E.G.R. control valve when any of the following conditions are met

Condition	EGR control solenoid	EGR system
Engine starting		
Throttle valve switch "ON"	ON	
Under heavy load driving		Does not
Low engine temperature		operate
High engine temperature		
Engine speed above 2,700 rpm		
Except above	OFF	Operates

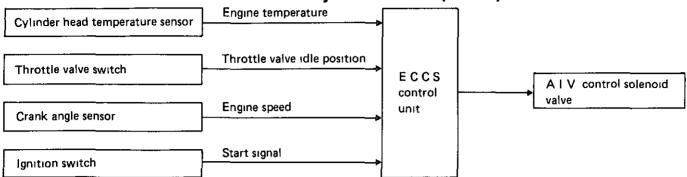
Fuel Pump Control

Description

The fuel pump is controlled by the E.C.U adjusting the output voltage supplied to the fuel pump

Fuel pump ON-OFF control

1) Fuel pump ON-OFF control (terminal (108))


Condition	Fuel pump operation
Ignition switch is tunred to ON	Operates for 5 seconds
Engine running and cranking	Operates
When engine is stopped	Stops in 1 second
Except as shown above	Stops

2) Fuel pump relay ON-OFF control (terminal (20))

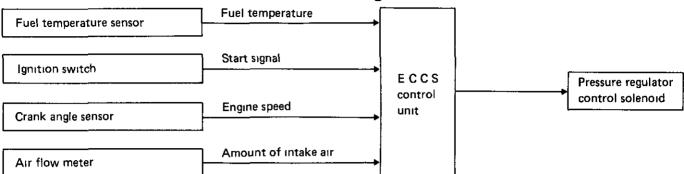
Condition	Fuel pump relay operation	Fuel pump operation
Ignition switch is turned to ON	ON for 5 seconds	Operates for 5 seconds
When engine is starting [Engine temp above 100°C (212°F)]	ON	Operates
After started [Engine temp above 100°C (212°F)]	ON for 30 seconds	Operates
When engine stalls and except as shown above	OFF	Stops

Fuel pump voltage control

Conditions	Voltage
5 seconds after ignition switch is turned to ON	
Engine cranking	
30 seconds after engine start [above 50°C (122°F)]	Approximately 13 4 [V]
Engine temp above 90°C (194°F) [Idle switch "OFF"]	
Engine temp below 10°C (50°F)	
Except above	94~134 [V]

Air Injection Valve (A.I.V.) Control

The exhaust air induction system is designed to send secondary air to the exhaust manifold, utilizing a vacuum caused by exhaust pulsation in the exhaust manifold.

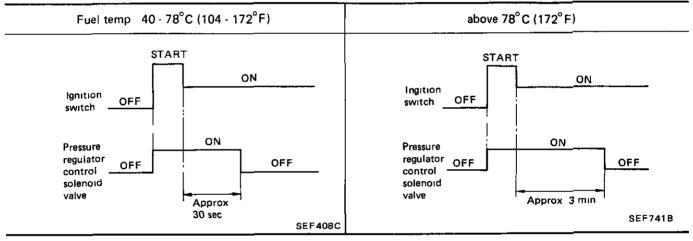

The exhaust pressure in the exhaust manifold usually pulsates in response to the opening and closing of the exhaust valve and it decreases below atmospheric pressure periodically.

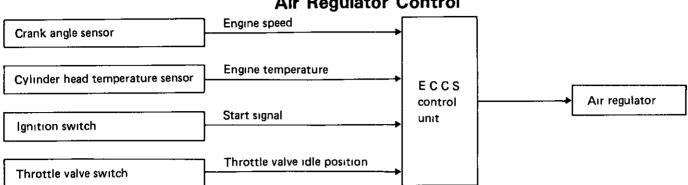
If a secondary air intake pipe is opened to the atmosphere under vacuum conditions, secondary air can be drawn into the exhaust manifold in proportion to the vacuum.

The air injection valve is controlled by the E.C.U., corresponding to the engine temperature. When the engine is cold, the A.I V. control system operates to activate the 3-way catalytic converter quickly. This system also operates during deceleration for the purpose of blowing off water around the air injection valve.

Condition	AIV control solenoid	AIV control system
Low engine temp	ON	Operates
During deceleration		
Except above*	OFF	Does not operate

 Including cylinder head temperature sensor circuit malfunctioning




Pressure Regulator Control

This system improves the startability in hot condition by cutting off the intake manifold vacuum and increasing the fuel pressure.

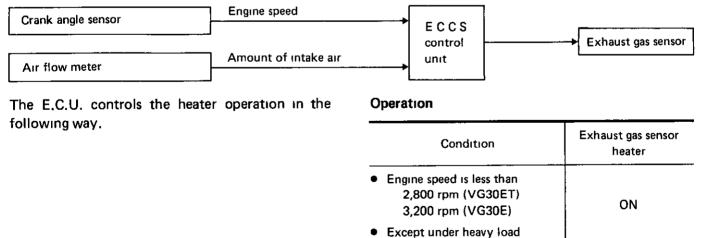
For VG30ET engine, the fuel line is imparted with high pressure which has been stored in the surge tank while the engine was running with turbocharger.

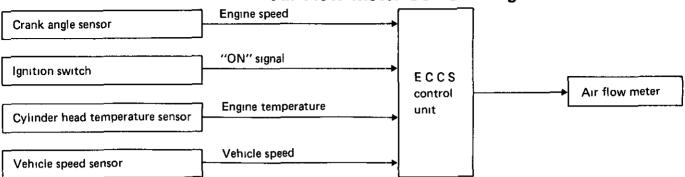
Operation

Air Regulator Control

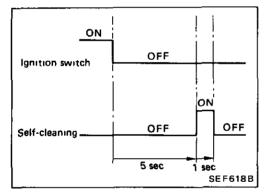
Description

The air regulator is controlled by the E.C.U at the same time as fuel pump ON-OFF control


Operation (Air regulator ON-OFF control)


Condition	Air regulator operation
Ignition switch is turned to ON	Operates for 5 seconds
While engine is running and cranking	Operates
When engine is stopped	OFF in 1 second
Except as shown above	OFF

OFF


Exhaust Gas Sensor Heater Control

Except as shown above

Air Flow Meter Self-cleaning Control

Description

After the engine is stopped, the E.C.U. heats up the hot wire to approximately $1,000^{\circ}C$ ($1,832^{\circ}F$) to burn out dust which adhered to the hot wire.

Operation

Condition	Self-cleaning system	
 Engine speed has not exceeded 1,500 rpm before key off 		
 Vehicle speed has not exceeded 20 km/h (12 MPH) before key off 	Does not operate	
 Cylinder head temperature is higher than 115°C (239°F) when key off 	Does not operate	
Engine stall with key in ON position		
Except as shown above	Operates	

Fail-safe System

AIR FLOW METER

Description

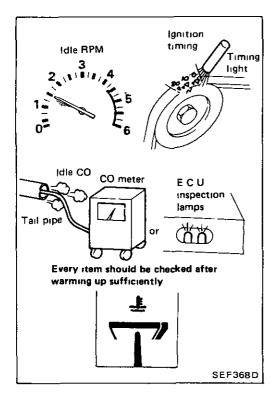
When the output voltage of air flow meter is lower than the preprogrammed value, the E.C.U. judges it as a malfunctioning of air flow meter. The E.C.U. fixes the systems in the following condition

Operation

System	Fixed condition
EGR control system	OFF
Idle speed control system	A duty ratio is fixed at the preprogrammed value
Fuel injection control system	Fuel is shut off above 2,000 rpm (Engine speed does not exceed 2,000 rpm)

CYLINDER HEAD TEMPERATURE SENSOR

Description


When the output signal of cylinder head temperature sensor is abnormal the E C.U. judges it as a malfunctioning of cylinder head temperature sensor.

The E.C.U. decides the cylinder head temperature according to the time from ignition switch ON.

Operation

Condition	Cylinder head temperature decided
Just as ignition switch is turned ON or Start	20°C (68°F)
More than 6 minutes after ignition ON or Start	80°C (176°F)
Except as shown above	20 - 80°C (68 - 176°F) (Depends on the time)

DIAGNOSTIC PROCEDURE

Driveability

 Make sure that the following items are in proper condition CHECK DATA.
 Idle speed

1) Idle speed

VG30E (M/T & A/T in "D" position):

700±50 rpm at sea level

650±50 rpm at high altitudes

VG30ET:

M/T

700±50 rpm

A/T

650±50 rpm (in "D" position)

2) Ignition timing

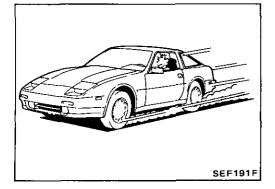
VG30E:

20° ± 2° B.T.D.C.

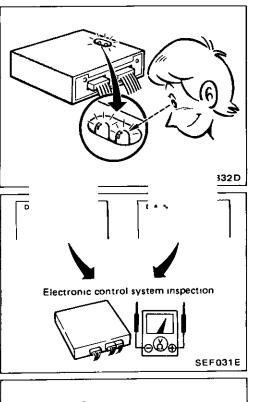
VG30ET:

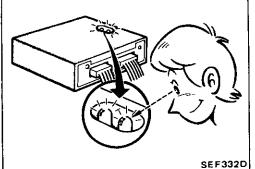
15° ±2° B.T.D.C.

- 3) Idle CO
- O 0.2 4.0% (in tail pipe)
 - Throttle valve switch harness connector disconnected (No A.I.V. controlled condition)
 - Cylinder head temperature sensor harness connector disconnected and then 2.5 kΩ resistor connected.
 - Exhaust gas sensor harness connector disconnected.
- Flashes of E.C.U. red inspection lamp in mode II (If flashes, O.K.)
- 4) Mixture ratio at approximately 2,000 rpm of engine speed. Number of flashes of E.C.U. inspection green lamp in mode I


5 times or more/10 seconds

- 5) Engine speed of idle switch OFF → ON
 - M/T: Idle speed + 250± 150 rpm
 - A/T: Engine speed (In "N" position) + 250±150 rpm


If N.G., adjust to the specified value. See page EF & EC-99.


2. Perform driving test

Evaluate effectiveness of adjustments by driving vehicle During driving vehicle, perform real time diagnostic test

DIAGNOSTIC PROCEDURE

Driveability (Cont'd)

3. Perform E C C S self-diagnosis See page EF & EC-36.

4 If the result of driveability test is unsatisfactory, or malfunctioning conditions are found in performing ECC.S self-diagnosis and real time diagnostic test, perform general inspection, electronic system inspection and real time diagnostic inspection by following DIAGNOSTIC TABLES 1 and 2 in response to driveability trouble items If NG, repair or replace

See page EF & EC-33.

5 Perform switches ON/OFF diagnostic test See page EF & EC-44.

6 Perform driving test Re-evaluate vehicle performance after all inspections

Diagnostic Table 1

SYSTEM INSPECTION TABLE

Sensor & actuator Reference pages for inspection	Crank angle sensor	Air flow meter	Cylinder head tem- perature sensor	lgnition switch	Injector	Throttle valve switch	Neutral switch	Exhaust gas sensor
System	EF & EC- 54	EF & EC- 56	EF & EC- 58	Refer to EL section	EF & EC- 76	EF & EC- 70	EF & EC- 88	EF & EC- 74
Fuel injection & mixture ratio feedback control	0	0	0	0	0	0	0	0
Ignition timing control	0	0	0	0		0		
Idle speed control	0		0	0		0	0	
E G R control	0		0	0		0		
A I V control			0	0		0		
Fuel pump control	0		0	0		0		
Fuel pressure control				0				······································
Air regulator control	0			0				
Air flow meter self-cleaning control	0		0	0				
Sensor & actuator Reference	Battery voltage	A I V control solenoid	E G R control solenoid valve	ldle-up solenoid/ A A C valve	Fuel tem- perature sensor	Vehicle speed sensor	Aır regulator	P R control solenoid valve

Reference pages		control solenoid valve	solenoid valve	A A C valve	perature sensor	speed sensor	Air regulator	control solenoid valve
System	_	EF & EC- 80	EF & EC- 82	EF & EC- 84/86	EF & EC- 66	EF & EC- 72	EF & EC- 92	EF & EC- 90
Fuel injection & mixture ratio feedback control	0				0	0		
Ignition timing control	Power transistor					0		
Idle speed control	0			0*		0		
E G R control			0					
A I V control		0						
Fuel pump control	Fuel pump relay							
Fuel pressure control					0			0
Air regulator control							0	
Air flow meter self-cleaning control						0		

* Input switch

① Power steering oil pressure switch

2 Heater or Air conditioner switch

3 Lighting switch & rear defogger switch

4 Radiator fan switch

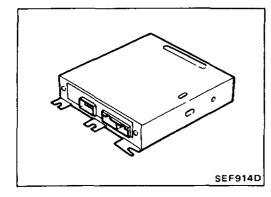
This table indicates the inspection items for the E C C S. control system. For each system, it is necessary to check sensors or actuators marked "O".

Diagnostic Table 2

DRIVEABILITY INSPECTION TABLE

SNI &	INSPEC LION ITEM							GEN	ERAL (GENERAL INSPECTION	NO									ECS	S SYST	S SYSTEM INSPECTION	ECTION		l
eter the set	/.		FUEL FLOW SYSTEM	W SYSTI	W		ELECT	ELECTRIC SYSTEM	;TEM	<u> </u>		AIF	3 FLOW	AIR FLOW SYSTEM			IDLE UP SOLENOID VALVE		CHAN	CHANK ANGLE SENSOR		AIR FLOW METER	CYLINI TEMPI SE	CY LINDER HEAD TEMPERATURE SENSOR	40
	FOR INSPEC	Fuel level	Fuel	Fuet filter	Fuel Irne	Bat tery	Sperk plug	lgnition wire	Alter	Starter	Air cleaner	Air flow fine	E G R valve	F I C D solenoid vaive	Air regu lator	> . 	Short	Open	120° 1 signal si noise fe	120° signal si faults fa	1° F signal co faults 1	Poor connec S tion	Short	- co Deev Obev	Poor connec tion
CONCERNED WITH	HTH HTT	1	,	1	1	1	1		Refer to EL section	to to		<u>ч</u> ш ।	EF & EC 112	1	Ers Ecg3	1	I		1 1 1 1 1 1	EF&EC54		EF & EC 56	5	EF & EC 58	
juva	Heavy load			0	0		٥	0			0	0	0			0			0	0	0	0	0	0	0
	Middle load			0	0		0	0		 	0	0	0			0			0	0	0	0	0	0	0
	Light load			0	0		0	0			0	0	0			0			0	0	0	0	0	0	0
	Slow			0	0		0	0		 	0	0	0			0			0	0	0	0	0	0	0
DECELE BATING	Rapid deceleration			0	0		0	0			0	0	0			0			0	0	0	0	0	0	0
DRIVING	Blow deceleration			0	ο		0	0			0	0	0			0	· · · · -		0	0	0	0	0	0	0
HESITATION	Rapid acceleration			0	0		0	0			0	0	0			0			0	0	0	0	0	0	0
	Siow acceleration			0	0		0	0			0	0	0			0			0	0	0	0	0	0	0
STIMALE	Rapid acceleration			0	0		©	0			0	0	0			0			С	с	0	0	0	0	0
	Siow acceleration			0	0		0	0			0	0	0	r		0			0	0	0	0	0	0	0
BACKFIRE				0	0			0				0				0			0	0	0	0	0		0
AFTER FIRE								0			0					0			0	0	0	0		0	0
IDLE STABILITY	>						0	0	0		0	0	0	0	0	0		0	0	0	0	0	0	0	0
ENGINE STALL		0	0	0	0	0	0	0	0		0	0	0	0	0	0			0	ø	0	0	0	0	0
STARTABILITY		0	0			0	0	0	0	0	0	0			0	0			0	0	0	0	0	0	0
This table indic	This table indicates the inspection items for each type of sympton	tion ite:	The for B	ach typ	e of svr	matam		Cessary	for each	It is necessary for each symptom to check sensors or actuators marked	in to ch	neck sen	150rs or	actuato	re marke	ed @" or "O	С,								

ç o . ©


This table indicates the inspection items for each type of symptom. It is necessary for each symptom to check sensors or actuators marked Items marked "©' have a significant influence on driveability. Prior to items marked "O", check items marked "© Improper mixture ratio, improper ignition condition and an excess of E.G.R. volume can cause any symptom * If injector or air flow meter circuit is short or open, the fail safe system operates

/	INSPECTION ITEM	-		1				ľ				ECCS	SYSTE	E C C S SYSTEM INSPECTION	CTION										
erenence	eterence and	THT > X	THROTTLE VALVE SWITCH	SOLE	E G R CONTROL SOLENDID VALVE	EXH	EXHAUST GAS SENSOR	TOR	NEU TRAL SWITCH	STARTER		IGNITION		BAT TERV VOLT AGE	JEL PUN	FUEL PUMP CIRCUIT		A I V CONTROL SOLENOID VALVE	FUEL TEMP SENSOR	 	P R CONTROL SOLENOID VALVE		SE C	VEHICLE SPEED SENSOR	
	FORINSPEC	Short	Open	Short	Open	Short	Open	Clog ging	Shart	Short	Open St	Short		Low volt Sh age	Short Op	Open connec tion	Short	Open	Short	Open	Short	Open S	Short	Open col	Poor connec tion
CONCERNED WITH	D WITH	EF	EF & EC 70	EF 6	EF & EC-82	EF & EC	EC 74	ł	EF & EC 38	EF & EC 68	 	EF & EC-60			EF & EC 62	EC 62	E E	EF & EC 80	EF & EC-66	5C-66	EF&EC90	800	EF	EF & EC 72	1
	Heavy load	0			۲	0	0	0				-			-	0	0						-	-	ļ
LOAD	Middle load	0			٥	0	0	0		 						0	0						• • • • •		
	Light load	0			0	0	0	0								0	0				- 				
	LE Slow NG acceleration ING acceleration	0			0	0	0	0								0	0]
DECELE	Rapid LE deceleration				0	0	0	0								0								0	0
DRIVING	ING Slow deceleration				0	0	0	0						 		0								0	0
NOLEY FIGUR	Rapid acceleration	0			0	0	0	0	0							0	0								ł
	Slow acceleration	0			0	0	0	۵	0							0	0								
3 1001113	Rapid acceleration	0			0			0	0					· ••••		0					0	0			1
	Slow acceleration	0			0			0	0							0					0	0			1
BACKFIRE		0				0	0	0	0		• • •					0						-	-	\vdash	
AFTER FIRE			0		0	0	0											0							1
IDLE STABILITY	LITY		0		0	0	0	0								0							0	0	0
ENGINE STALL						0	0	0			-	0	0	0	0 0	0					0	0			
STARTAB [‡] LITY	ITY							0		0	0	0	0	0	0	0			0	0	0	0			

DIAGNOSTIC PROCEDURE

Diagnostic Table 2 (Cont'd)

SELF-DIAGNOSIS

Description

The self-diagnosis is useful to diagnose malfunctions in major sensors and actuators of the ECCS system. There are 5 modes in the self-diagnosis system

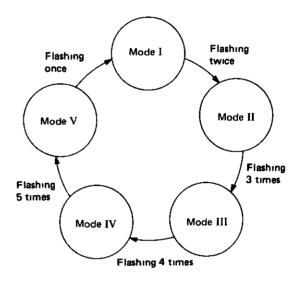
- 1. Mode I Mixture ratio feedback control monitor A
- During closed loop condition The green inspection lamp turns ON when lean condition is detected and goes OFF by rich condition With clamping, mixture conditions (lean or rich) just before clamping are maintained
- During open loop condition The green inspection lamp keeps OFF
- 2 Mode II Mixture ratio feedback control monitor B The green inspection lamp function is the same as Mode I.
- During closed loop condition

The red inspection lamp turns ON and OFF simultaneously with the green inspection lamp when the mixture ratio is controlled within the specified value

- During open loop condition The red inspection lamp stays OFF.
- 3. Mode III Self-diagnosis

This mode is the same as the former self-diagnosis in selfdiagnosis mode

4. Mode IV - Switches ON/OFF diagnosis

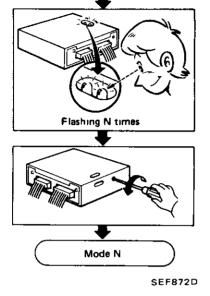

During this mode, the inspection lamps monitor the switch ON-OFF condition

- Throttle valve switch
- Starter switch
- Vehicle speed sensor
- 5. Mode V Real time diagnosis

The moment the malfunction is detected, the display will be presented immediately. That is, the condition at which the malfunction occurs can be found by observing the inspection lamps during driving test.

Description (Cont'd) SWITCHING THE MODES

- 1 Turn ignition switch "ON".
- 2 Turn diagnostic mode selector on E.C.U. fully clockwise and wait the inspection lamps flash
- 3 Count the number of the flashing time, and after the inspection lamps have flashed the number of the required mode, turn diagnostic mode selector fully counterclockwise immediately



SEF989D

When the ignition switch is turned off during diagnosis, in each mode, and then turned back on again after the power to the E.C.U. has dropped off completely, the diagnosis will automatically return to Mode I.

The stored memory would be lost if

- 1 Battery terminal is disconnected
- 2 After selecting Mode III, Mode IV is selected However, if the diagnostic mode selector is kept turned fully clockwise, it will continue to change in the order of Mode I \rightarrow II \rightarrow III \rightarrow IV \rightarrow V \rightarrow I etc., and in this state the stored memory will not be erased

Modes I & II — Mixture Ratio Feedback Control Monitors A & B

In these modes, the control unit provides the Air-fuel ratio monitor presentation and the Air-fuel ratio feedback coefficient monitor presentation

				Engine running				
Mode	LED	Engine stopped	Open loop condition	Closed loop condition				
Mode I (Monitor A)	Green	ON	OFF	 OFF rich condition ON lean condition Maintains conditions just before clamping 				
	Red	ON	OFF	OFF				
	Green	ON	OFF	 OFF rich condition ON lean condition Maintains conditions just before clamping 				
Mode 11	Red OFF OFF			Compensating mixture ratio				
(Monitor B)		OFF	More than 5% rich	Between 5% lean and 5% rich	More than 5% lean			
			OFF	Synchronized with green LED	ON			

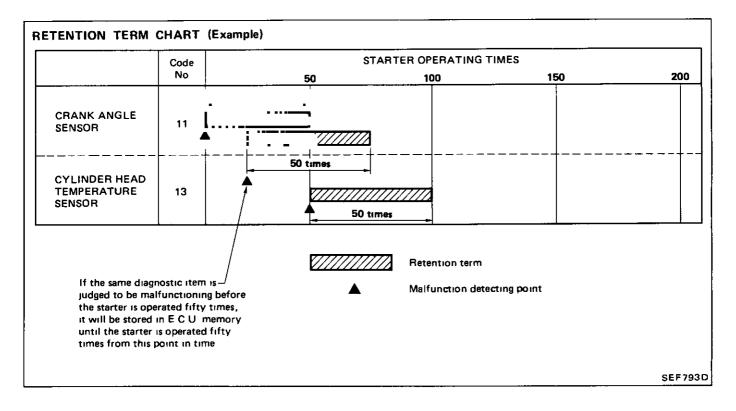
Mode III – Self-diagnostic System

The E C U constantly monitors the function of these sensors and actuators, regardless of ignition key position. If a malfunction occurs, the information is stored in the E C U and can be retrieved from the memory by turning on the diagnostic mode selector, located on the side of the E C U. When activated, the malfunction is indicated by flashing a red and a green L E D (Light Emitting Diode), also located on the E C U. Since all the self-diagnostic results are stored in the E C U 's memory even intermittent malfunctions can be diagnosed.

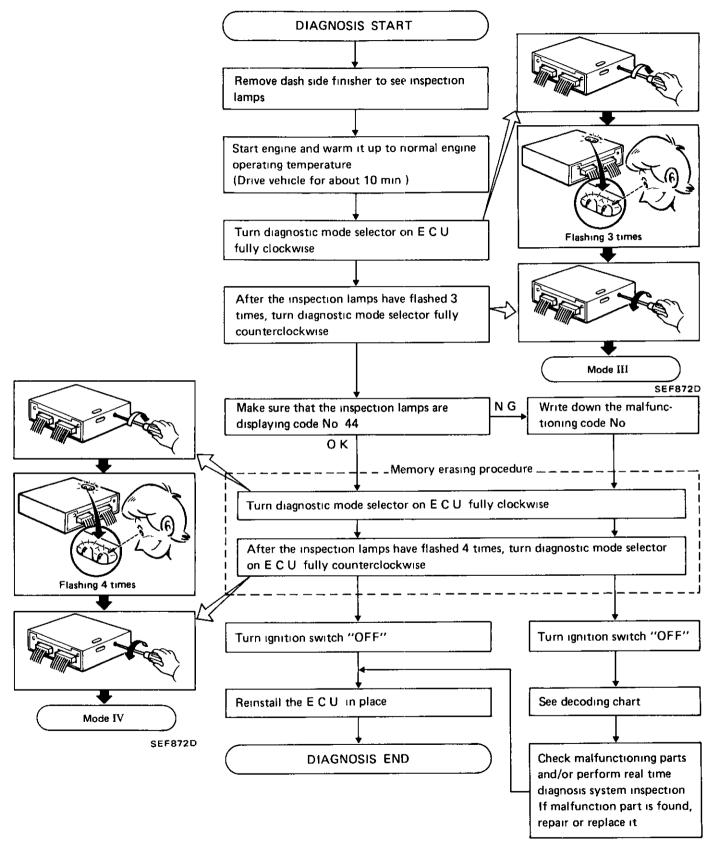
A malfunctioning part's group is indicated by the number of both the red and the green L E D s flashing First, the red L E D flashes and the green flashes follow. The red L E D refers to the number of tens while the green one refers to the number of units. For example, when the red L E D flashes once and then the green one flashes twice, this means the number "12" showing the air flow meter signal is malfunctioning. In this way, all the problems are classified by the code numbers.

- When engine fails to start, crank engine more than two seconds before starting self-diagnosis
- Before starting self-diagnosis, do not erase stored memory if doing so, self-diagnosis function for intermittent malfunctions would be lost

The stored memory would be lost if


- 1 Battery terminal is disconnected
- 2 After selecting Mode III, Mode IV is selected.

DISPLAY CODE TABLE

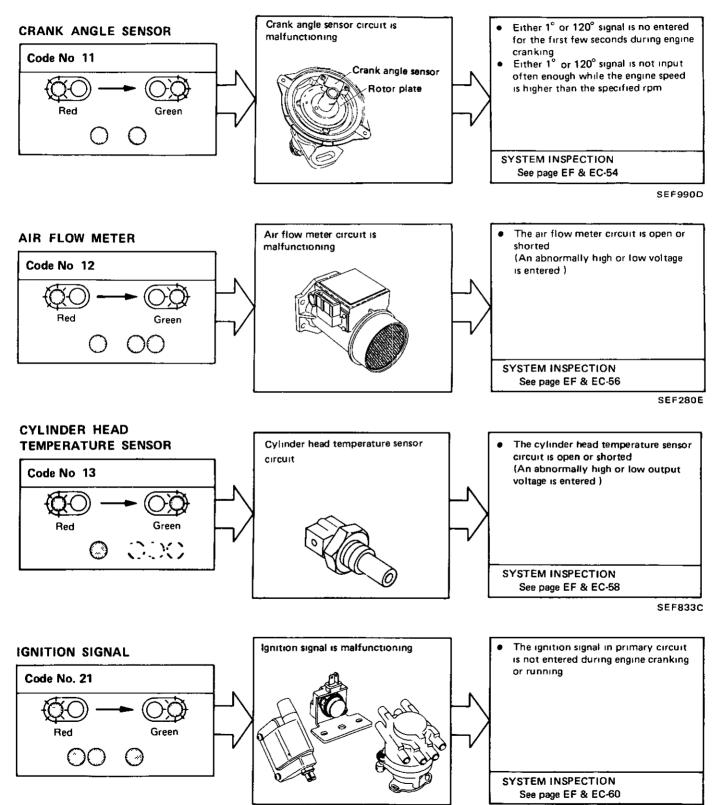

Code No	Detected items					
11	Crank angle sensor circuit					
12	Air flow meter circuit					
13	Cylinder head temperature sensor circuit					
21	21 Ignition signal missing in primary coil					
22	Fuel pump circuit					
34	Detonation sensor circuit [VG30ET]					
41	Fuel temperature sensor circuit					
44	No malfunctioning in the above circuits					

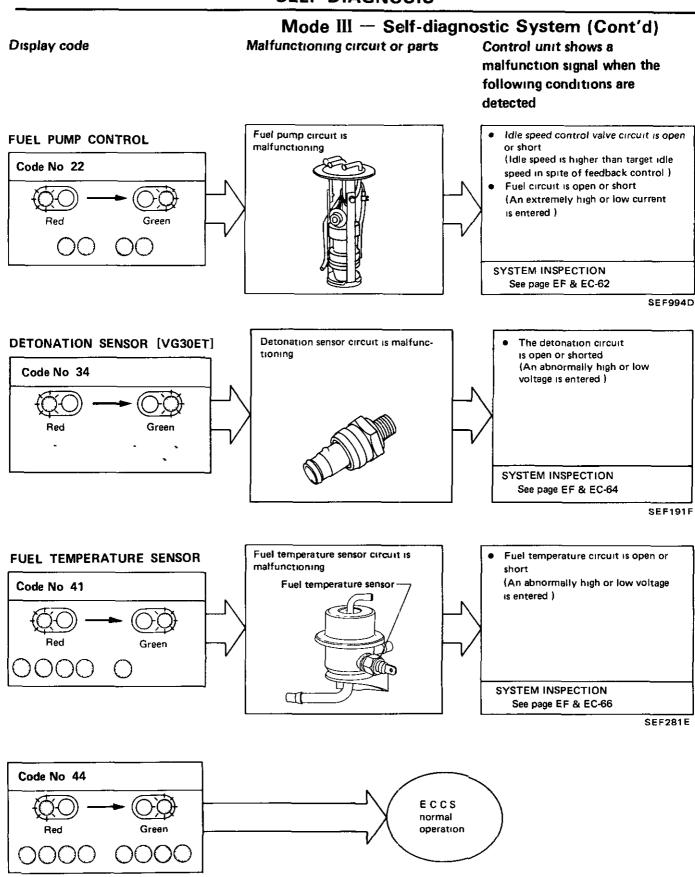
Mode III — Self-Diagnostic System (Cont'd) RETENTION OF DIAGNOSTIC RESULTS

The diagnostic result is retained in E C.U. memory until the starter is operated fifty times after a diagnostic item is judged to be malfunctioning. The diagnostic result will then be cancelled automatically. If a diagnostic item which has been judged to be malfunctioning and stored in memory is again judged to be malfunctioning before the starter is operated fifty times, the second result will replace the previous one. It will be stored in E C U memory until the starter is operated fifty times more

Mode III — Self-diagnostic System (Cont'd) SELF-DIAGNOSTIC PROCEDURE

CAUTION


During displaying code No in self-diagnosis mode (mode III), if the other diagnostic mode should be done, make sure to write down the malfunctioning code No before turning diagnostic mode selector on E C U fully clockwise, or select the diagnostic mode after turning switch "OFF" Otherwise self-diagnosis information stored in E.C.U memory until now would be lost.


Malfunctioning circuit or parts

Mode III — Self-diagnostic System (Cont'd) DECODING CHART

Display code

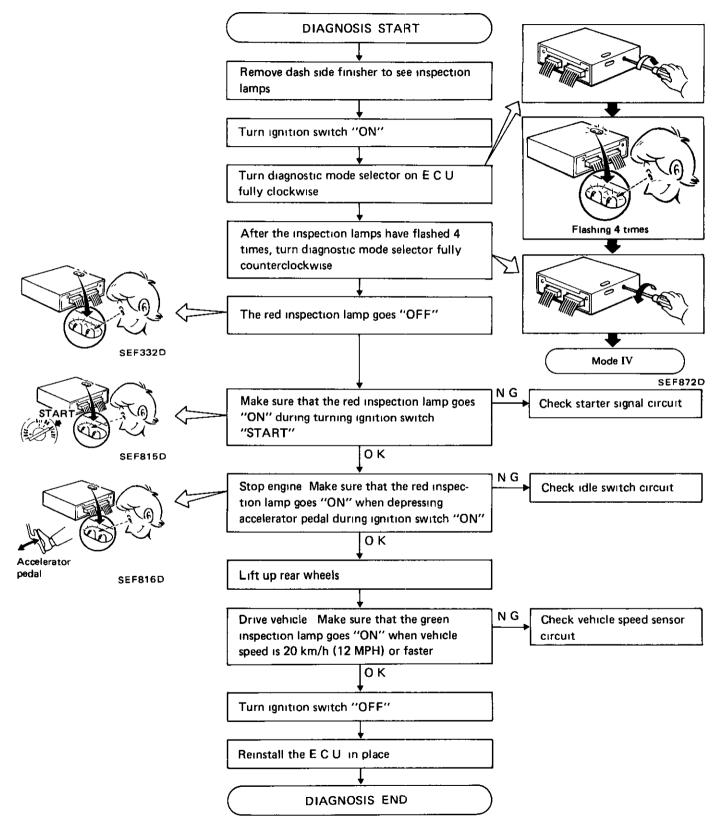
Control unit shows a malfunction signal when the following conditions are detected.

SEF841C

Mode IV — Switches ON/OFF Diagnostic System

In switches ON/OFF diagnosis system, ON/OFF operation of the following switches can be detected continuously

- Throttle valve switch
- Starter switch
- Vehicle speed sensor
- (1) Throttle valve switch & Starter switch


The switches ON/OFF status at the point when mode IV is selected is stored in ECU memory. When either switch is turned from "ON" to "OFF" or "OFF" to "ON", the red L.E.D on ECU alternately comes on and goes off each time switching is detected.

(2) Vehicle Speed Sensor

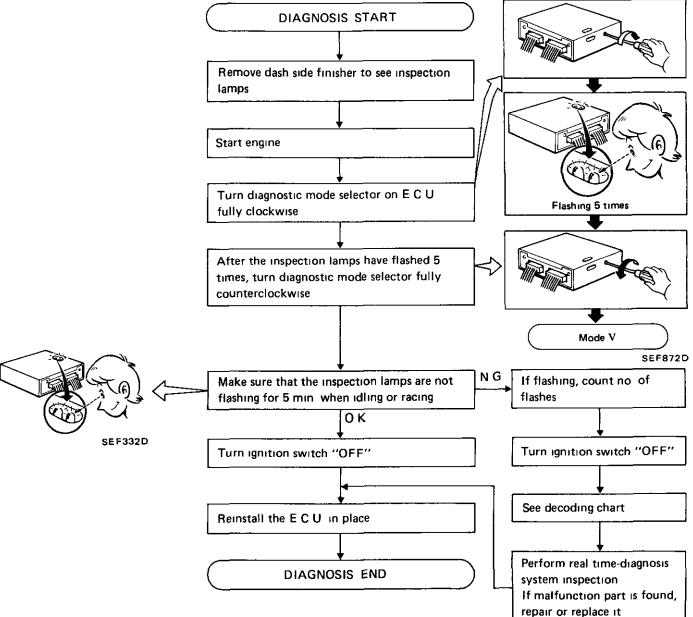
The switches ON/OFF status at the point when mode IV is selected is stored in ECU memory. When vehicle speed is 20 km/h (12 MPH) or slower, the green LED on ECU is off. When vehicle speed exceeds 20 km/h (12 MPH), the green L.E.D. on ECU comes "ON"

Mode IV — Switches ON/OFF Diagnostic System (Cont'd)

SELF-DIAGNOSTIC PROCEDURE

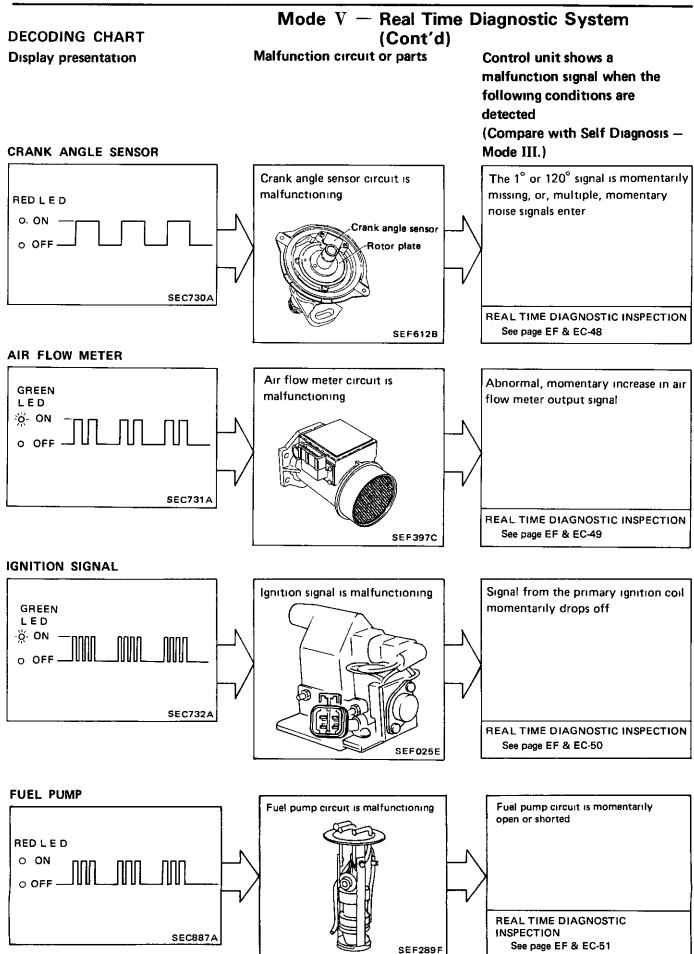
CAUTION:

• For safety, do not drive rear wheels at higher speed than required.


Mode V — Real Time Diagnostic System

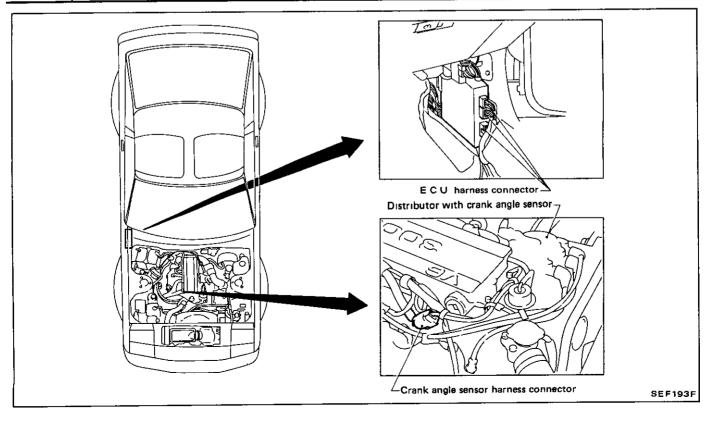
In real time diagnosis, if any of the following items are judged to be faulty, a malfunction is indicated immediately

- Crank angle sensor (120° signal & 1° signal)
- Ignition signal
- Air flow meter output signal
- Fuel pump


Consequently, this diagnosis is a very effective measure to diagnose whether the above systems cause the malfunction or not, during driving test. Compared with self-diagnosis, real time diagnosis is very sensitive, and can detect malfunctioning conditions in a moment. Further, items regarded to be malfunctions in this diagnosis are not stored in E C U memory.

CAUTION.

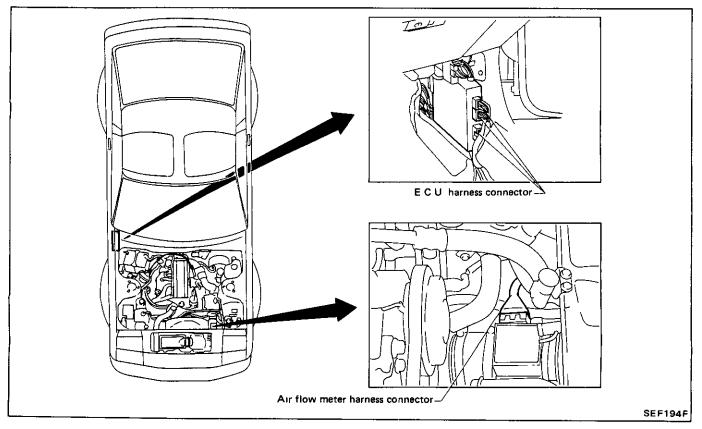
In real time diagnosis, pay attention to inspection lamp flashing. E C U displays the malfunction code only once, and does not memorize the inspection



Mode V — Real Time Diagnostic System (Cont'd)

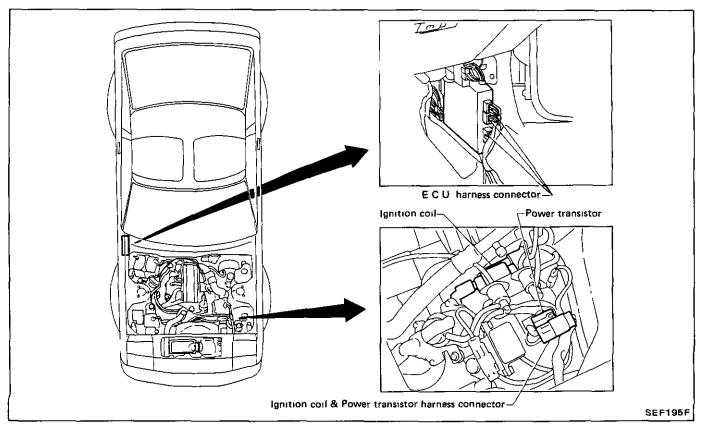
REAL TIME DIAGNOSTIC INSPECTION

Crank Angle Sensor


			Check parts			
Check sequence	Check items	Check conditions	Crank angle sensor harness connector	Sensor & actuator	E C U 20- & 16-pin connector	If malfunction, perform the following items
1	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	Go to check item 2
2	Check harness continuity at connector	Engine stopped	0	×	×	Go to check item 3
3	Disconnect harness con- nector, and then check dust adhesion to harness connector	Engine stopped	0	×	0	Clean terminal surface
4	Check pin terminal bend	Engine stopped	x	x	0	Take out bend
5	Reconnect harness con- nector and then recheck harness continuity at connector	Engine stopped	0	x	×	Replace terminal
6	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina

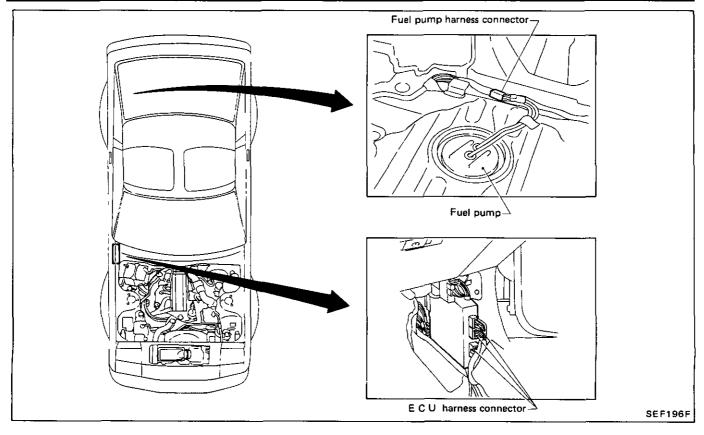
Mode V — Real Time Diagnostic System (Cont'd)

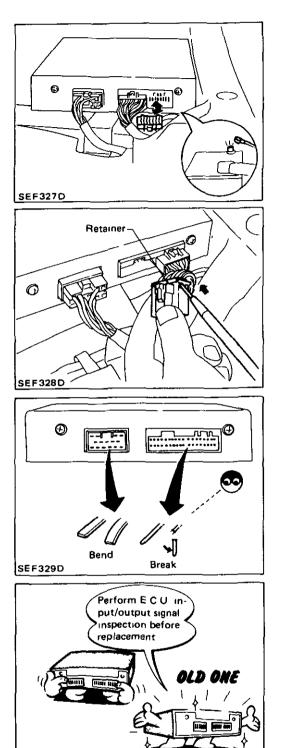
Air Flow Meter

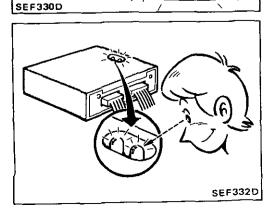

Check sequence		Check conditions		Check parts		
	Check items		Air flow meter harness connector	Sensor & actuator	E C U 20- & 16-pin connector	If malfunction, perform the following items
1	Tap and wiggle harness con nector or component during real time diagnosis	During real time diagnosis	0	0	0	Go to check item 2
2	Check harness continuity at connector	Engine stopped	0	x	×	Go to check item 3
3	Disconnect harness con- nector, and then check dust adhesion to harness connector	Engine stopped	0	x	0	Clean terminal surface
4	Check pin terminal bend	Engine stopped	×	×	0	Take out bend
5	Reconnect harness con nector and then recheck harness continuity at connector	Engine stopped	0	x	x	Replace terminal
6	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina

Mode V — Real Time Diagnostic System (Cont'd)

Ignition Signal

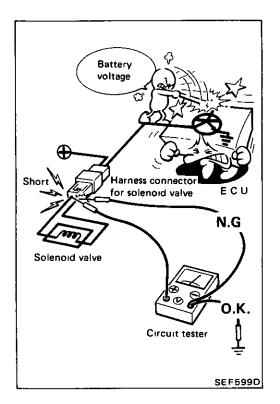

Check sequence		Check conditions	Check parts			
	Check items		Ignition signal harness connector	Sensor & actuator	E C U 20- & 16-pin connector	If malfunction, perform the following items
1	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	Go to check item 2
2	Check harness continuity at connector	Engine stopped	0	х	x	Go to check item 3
3	Disconnect harness con- nector, and then check dust adhesion to harness connector	Engine stopped	0	x	0	Clean terminal surface
4	Check pin terminal bend	Engine stopped	×	х	0	Take out bend
5	Reconnect harness con- nector and then recheck harness continuity at connector	Engine stopped	0	x	x	Replace terminal
6	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina




Mode V — Real Time Diagnostic System (Cont'd)

Fuel pump

Check sequence		Check conditions	Check parts			
	Check items		Fuel pump harness connector	Sensor & actuator	E C U 20- & 16-pin connector	If malfunction, perform the following items
1	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	Go to check item 2
2	Check harness continuity at connector	Engine stopped	0	x	x	Go to check item 3
3	Disconnect harness con nector, and then check dust adhesion to harness connector	Engine stopped	0	×	0	Clean terminal surface
4	Check pin terminal bend	Engine stopped	x	×	0	Take out bend
5	Reconnect harness con- nector and then recheck harness continuity at connector	Engine stopped	0	×	×	Replace terminal
6	Tap and wiggle harness con- nector or component during real time diagnosis	During real time diagnosis	0	0	0	If malfunction codes are displayed during real time diagnosis, replace termina

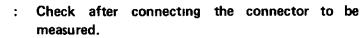


CAUTION:

- Before connecting or disconnecting E C U. harness connector to or from any E.C U., be sure to turn the ignition switch to the "OFF" position and disconnect the negative battery terminal in order not to damage E.C.U. as battery voltage is applied to E.C.U. even if ignition switch is turned off Otherwise, there may be damage to the E.C.U.
- 2 When performing E.C.U input/output signal inspection, remove pin terminal retainer from 20- and 16-pin connector to make it easier to insert tester probe into connector.

- 3. When connecting pin connectors into E C.U. or disconnecting them from E.C.U., take care not to damage pin terminal of E C.U. (Bend or break).
- 4 Make sure that there are not any bends or breaks on E.C.U. pin terminal, when connecting pin connectors into E.C.U.
- 5. Before replacing E.C.U., perform E.C.U. input/output signal inspection and make sure whether E.C.U functions properly or not. (See page EF & EC-94.)

6. After performing this "ELECTRONIC CONTROL SYSTEM INSPECTION", perform E.C.C.S self-diagnosis and driving test.

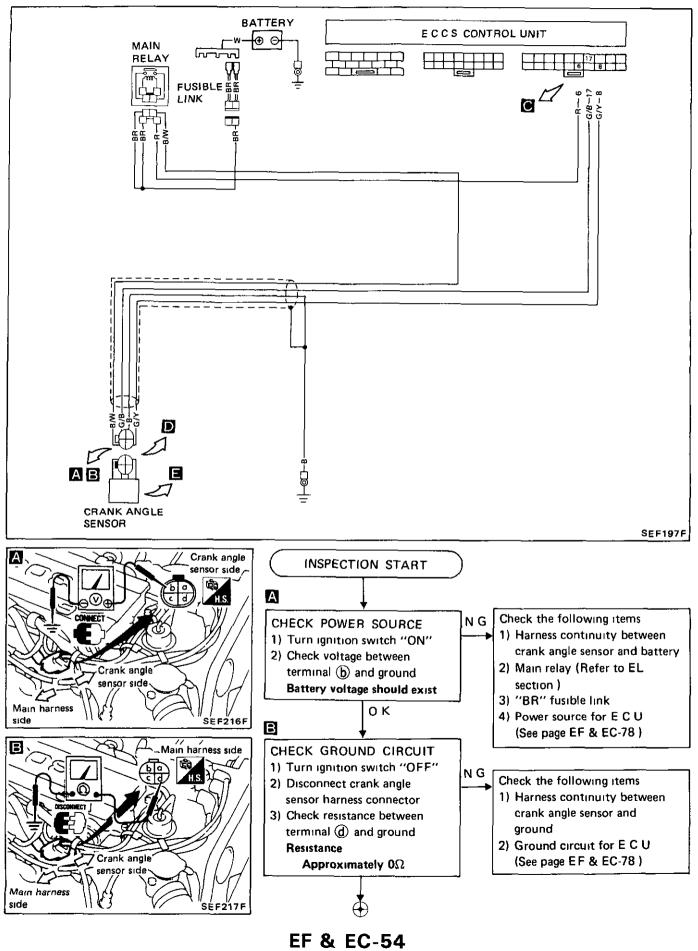

7. When measuring supply voltage of E.C.U. controlled components with a circuit tester, separate one tester probe from the other.

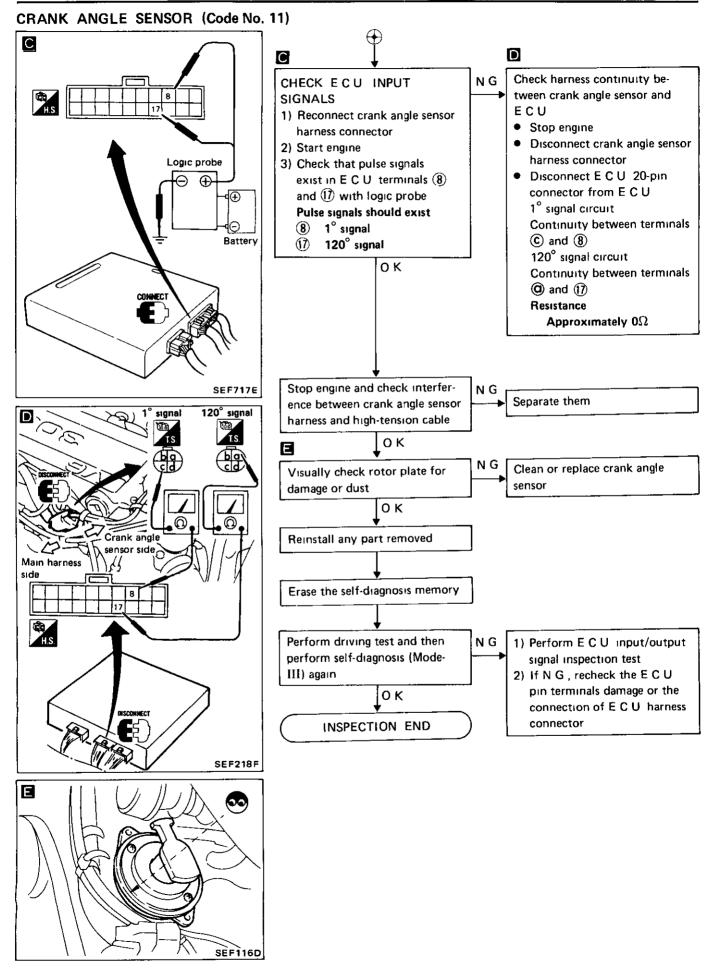
If the two tester probes accidentally make contact with each other during measurement, the circuit will be shorted, resulting in damage to the power transistor of the control unit.

8. Keys to symbols

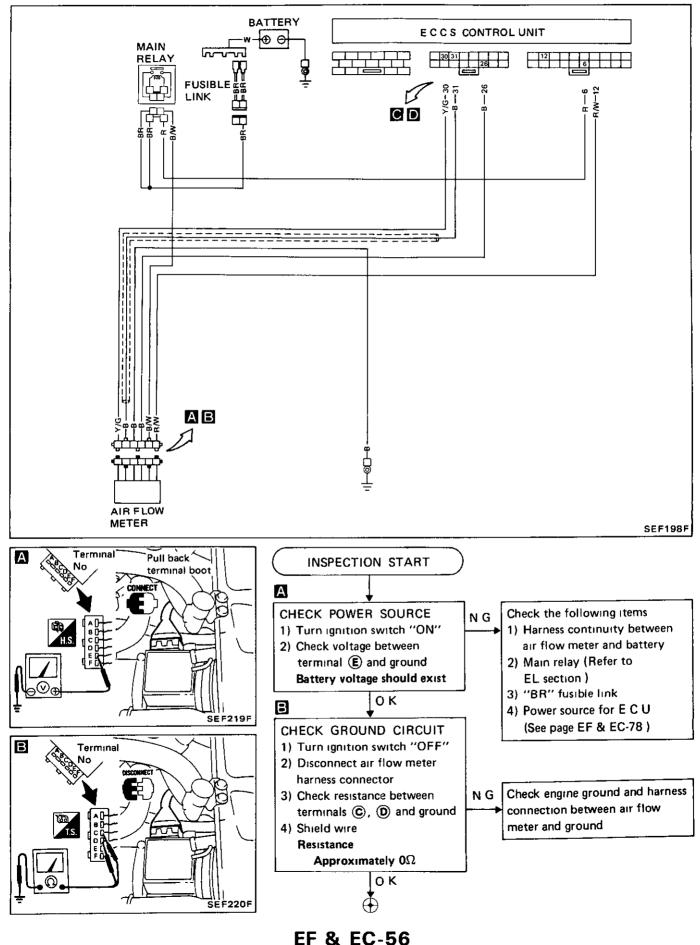
: Check after disconnecting the connector to be measured

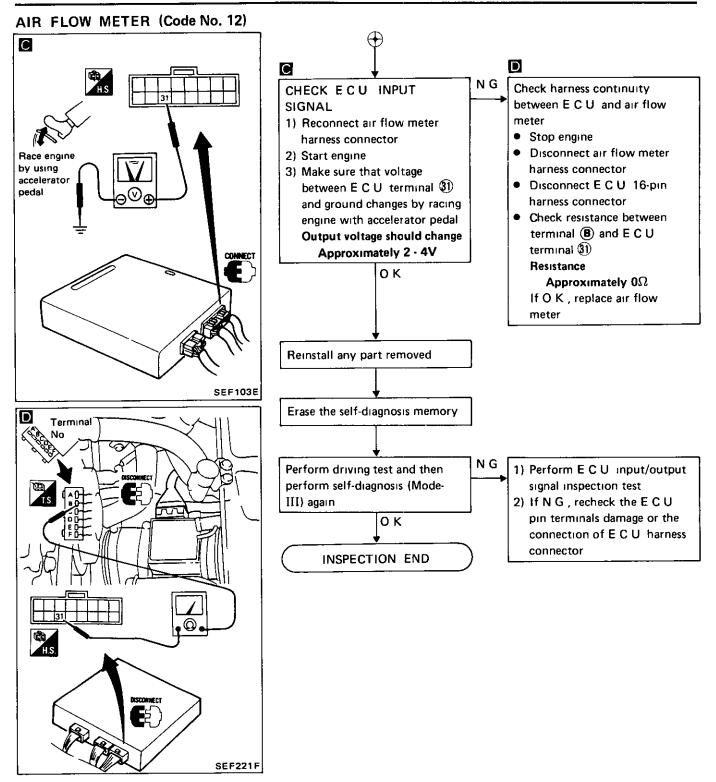
9. When measuring voltage or resistance at connector with tester probes, there are two methods of measurement; one is done from terminal side and the other from harness side. Before measuring, confirm symbol mark again.

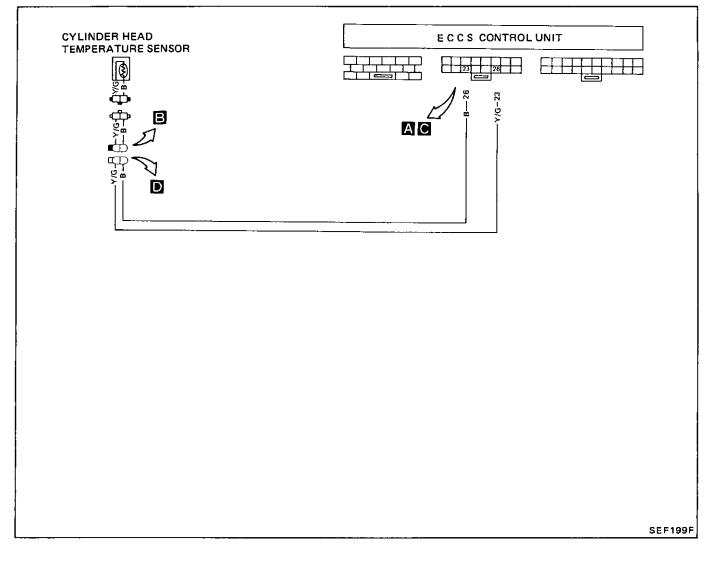

Inspection should be done from harness side.

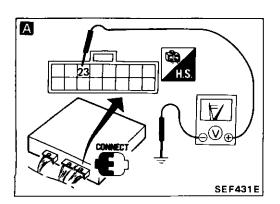

Inspection should be done from terminal side

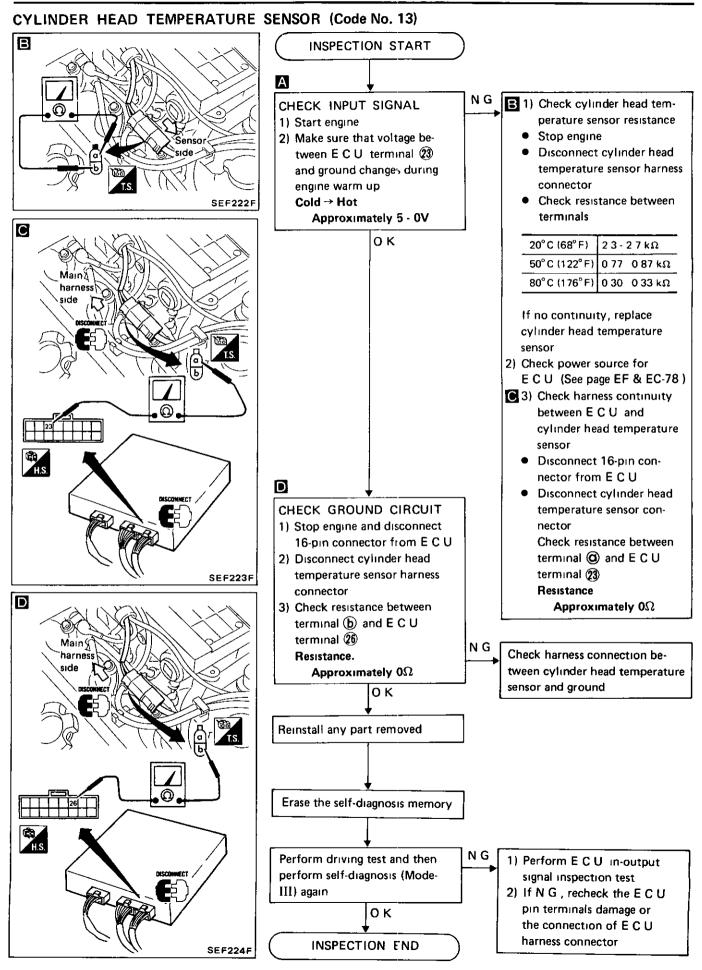
Refer to GI section.

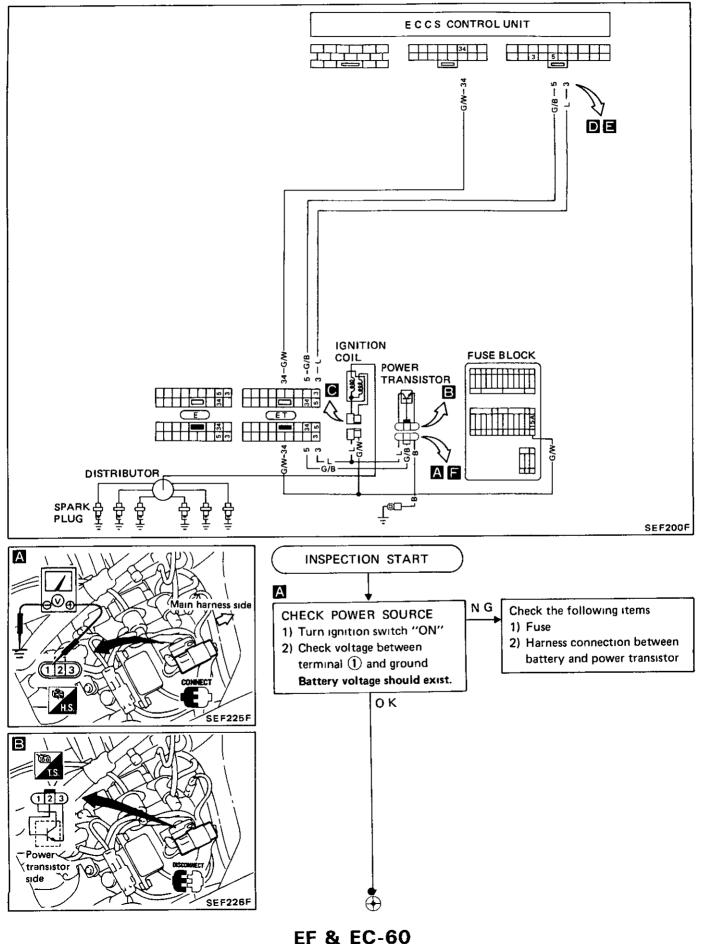

10. As for continuity check of joint connector, refer to EL section.

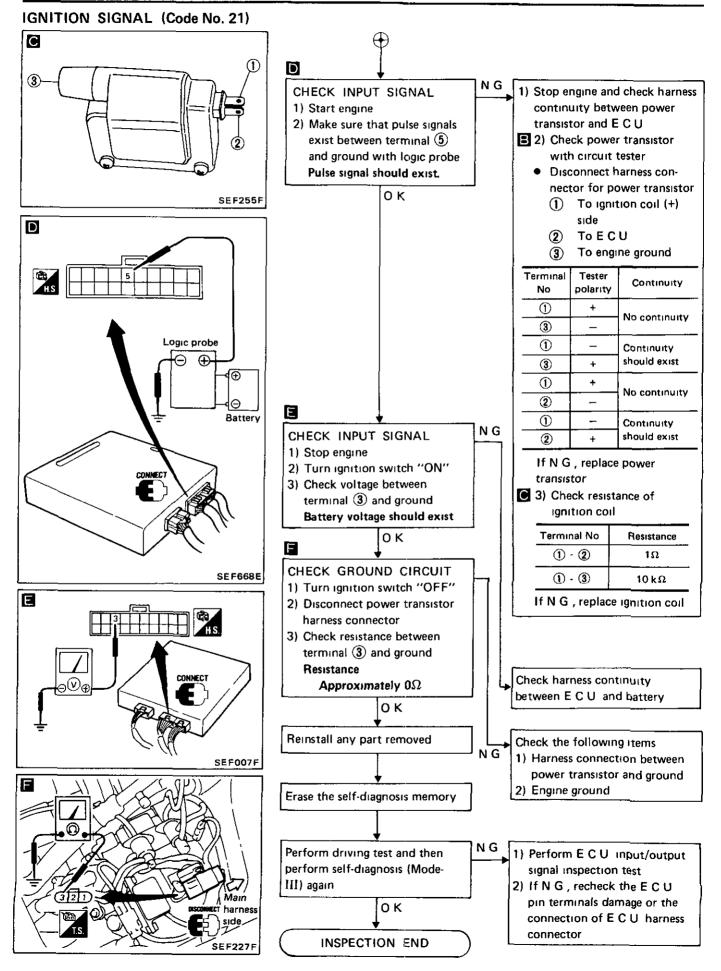

CRANK ANGLE SENSOR (Code No. 11)

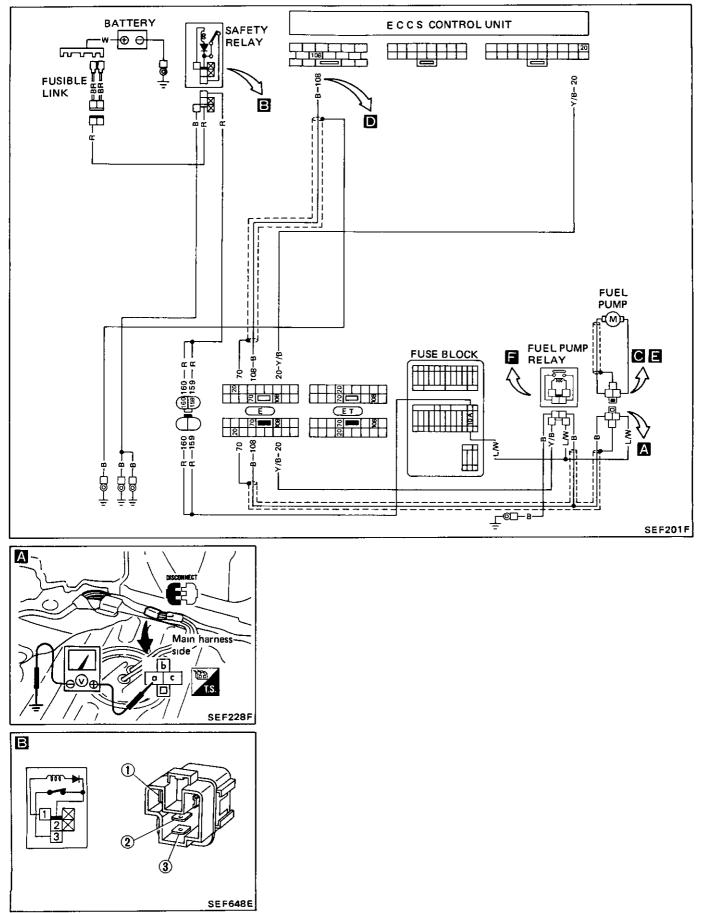


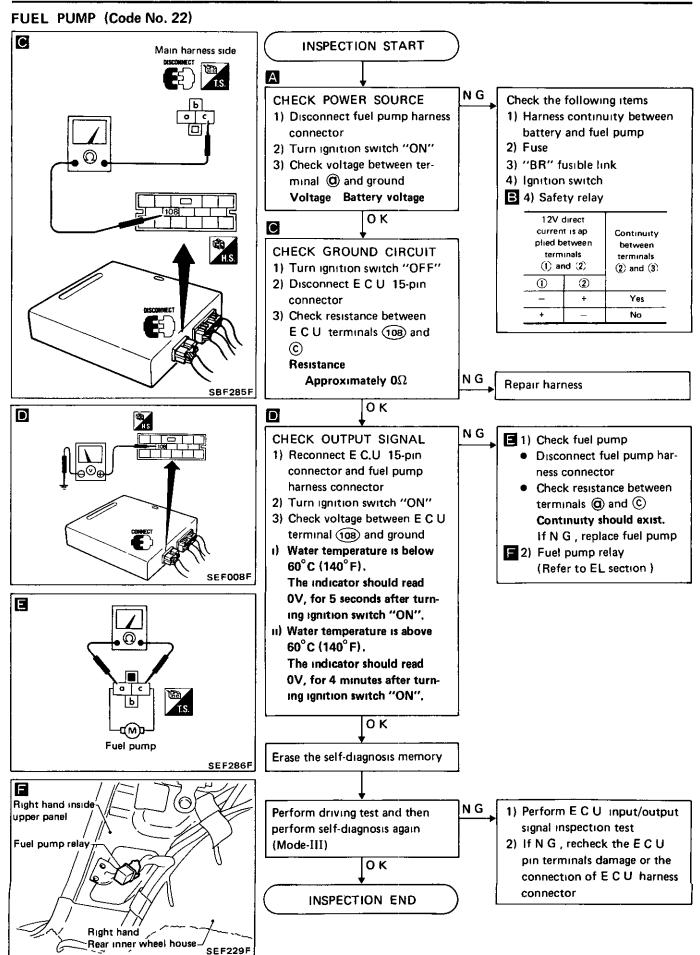

AIR FLOW METER (Code No. 12)



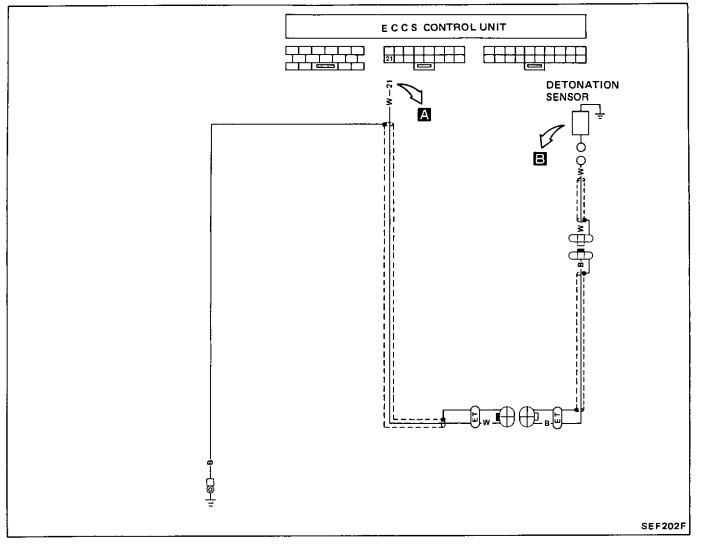

CYLINDER HEAD TEMPERATURE SENSOR (Code No. 13)

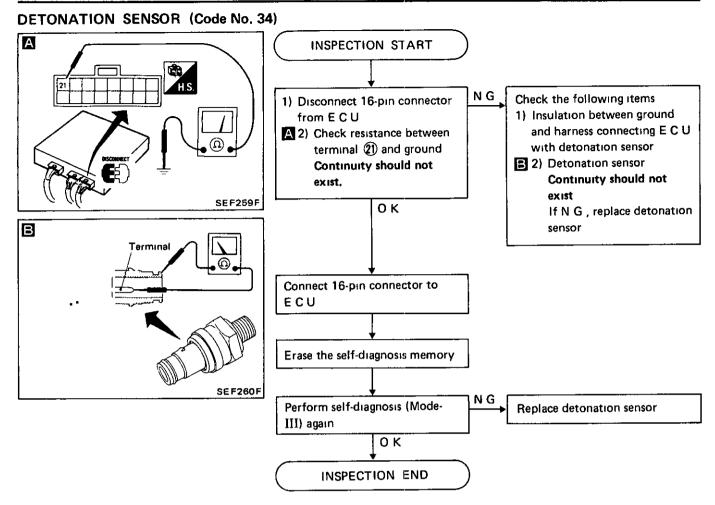


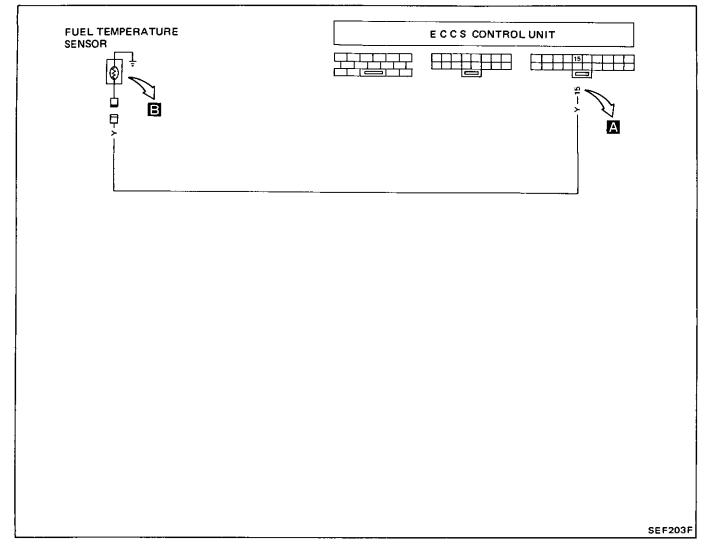


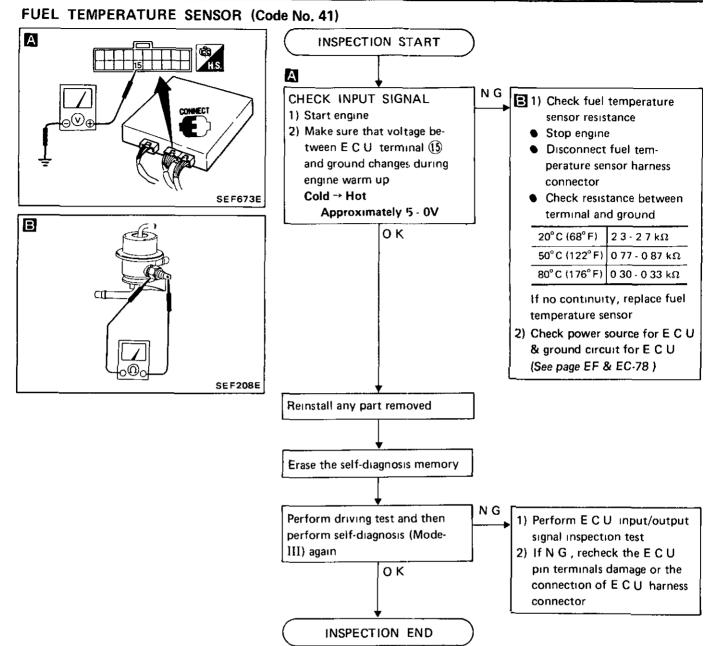

IGNITION SIGNAL (Code No. 21)

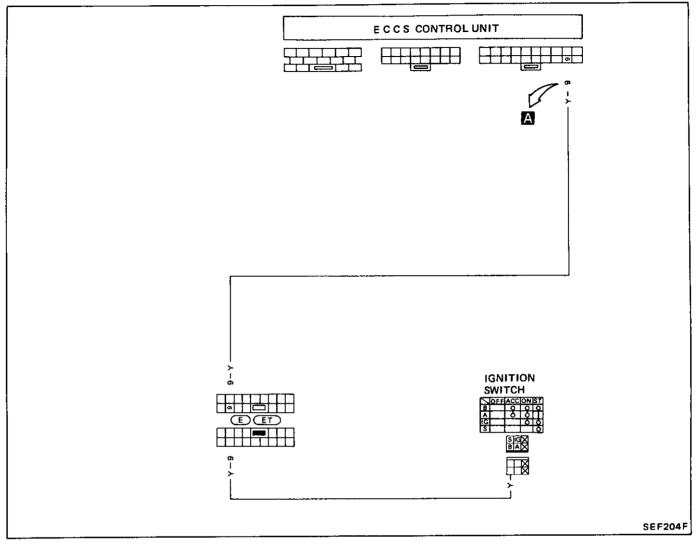
FUEL PUMP (Code No. 22)

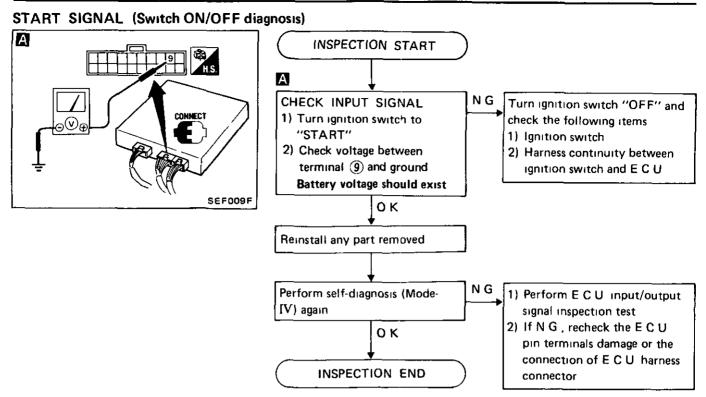


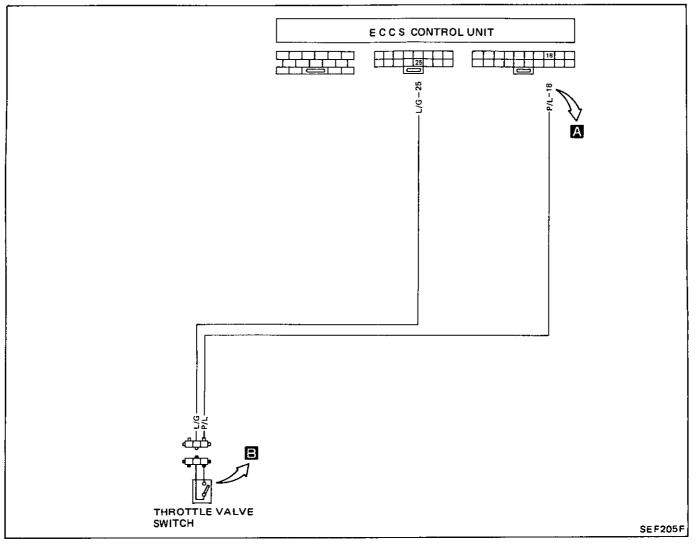


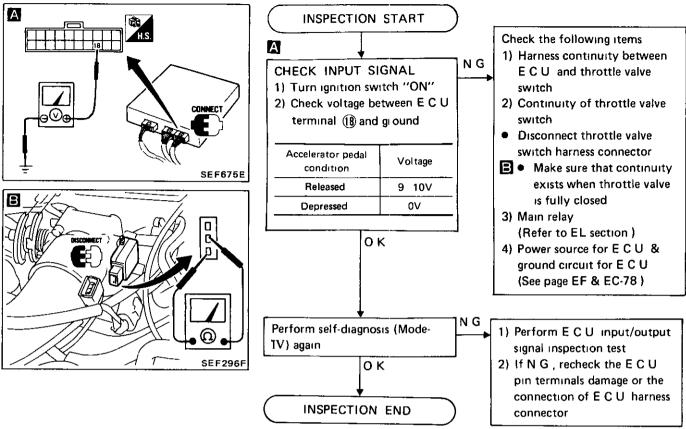

DETONATION SENSOR (Code No. 34)


_

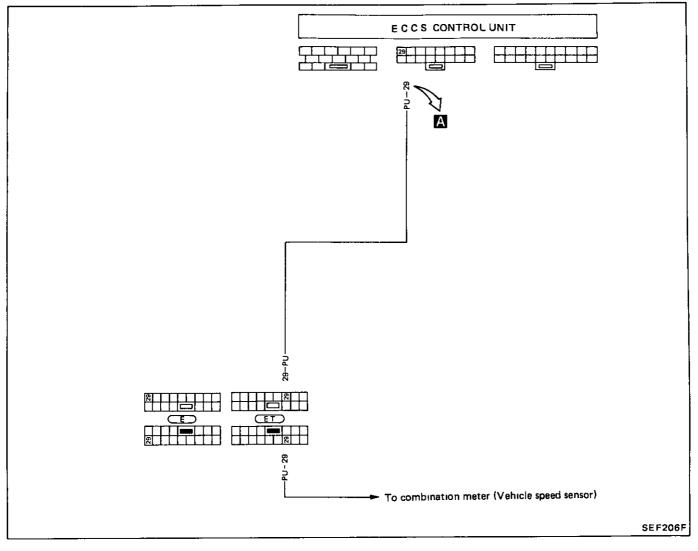


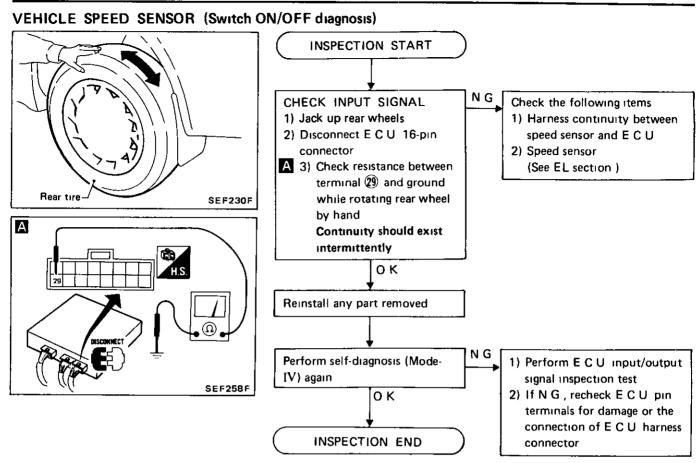

FUEL TEMPERATURE SENSOR (Code No. 41)


START SIGNAL (Switch ON/OFF diagnosis)

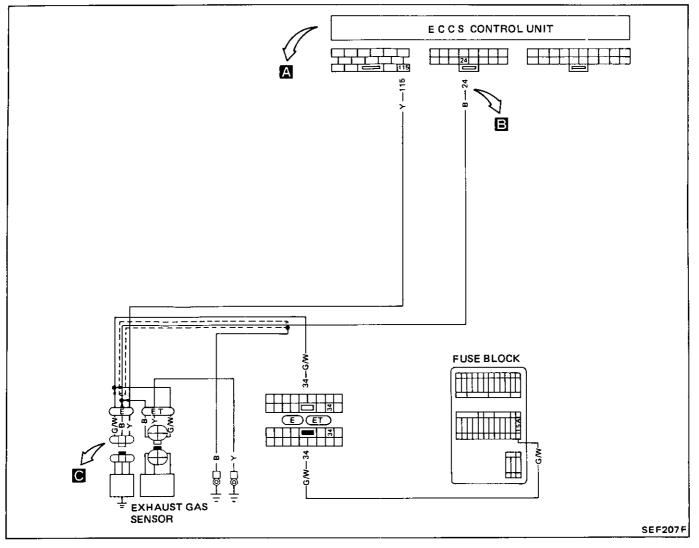


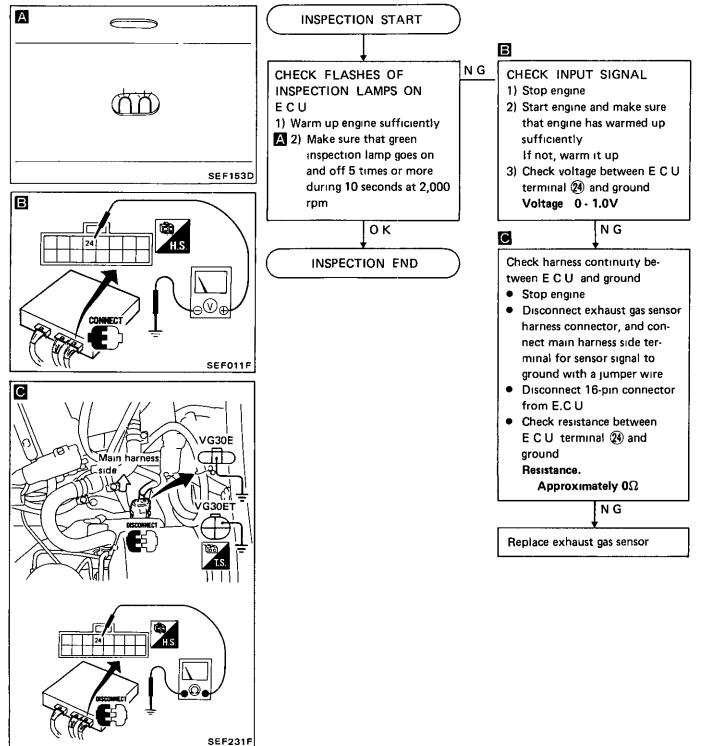
THROTTLE VALVE SWITCH (Switch ON/OFF diagnosis)

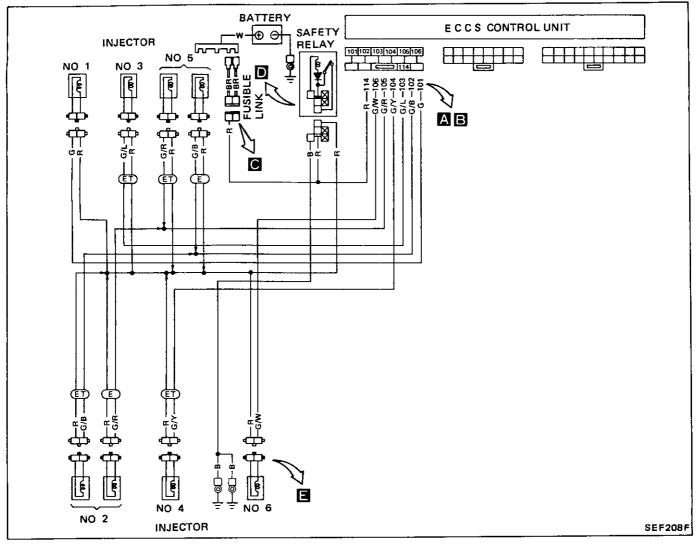


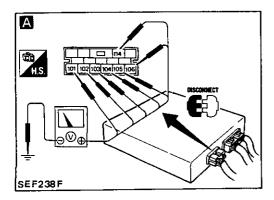

THROTTLE VALVE SWITCH (Switch ON/OFF diagnosis)

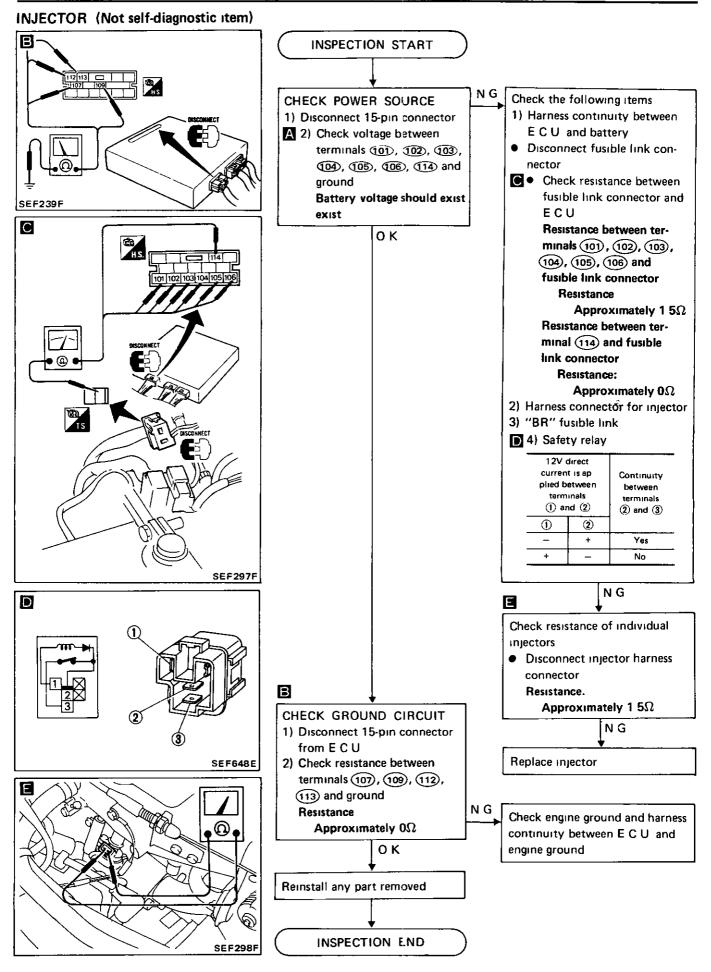
------ <u>F</u>

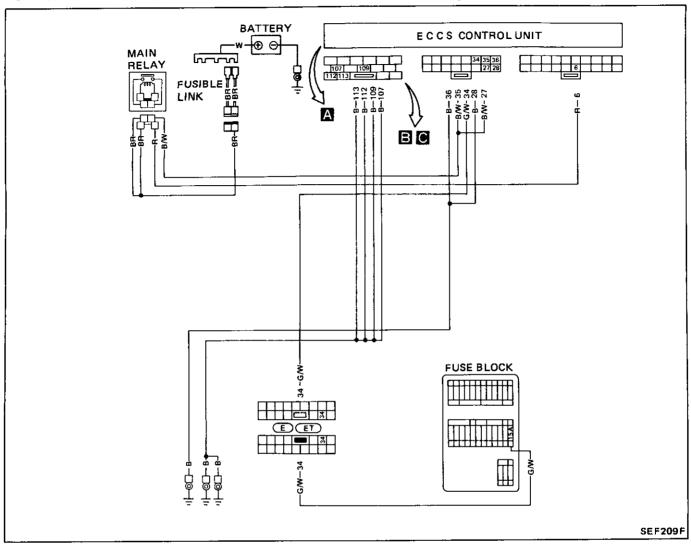

VEHICLE SPEED SENSOR (Switch ON/OFF diagnosis)

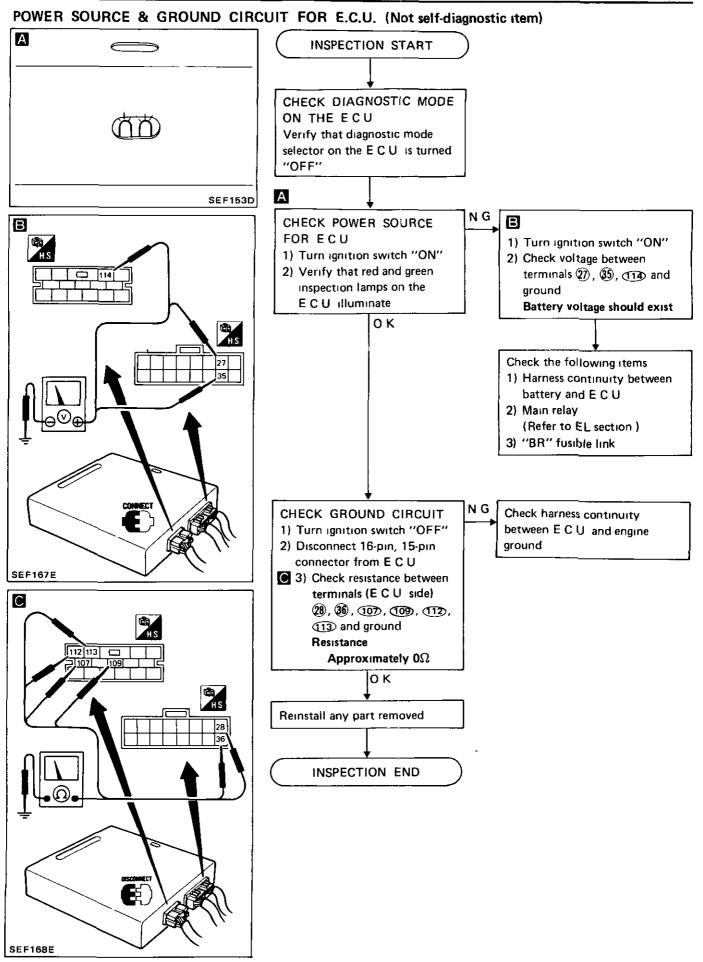



EXHAUST GAS SENSOR (Not self-diagnostic item)

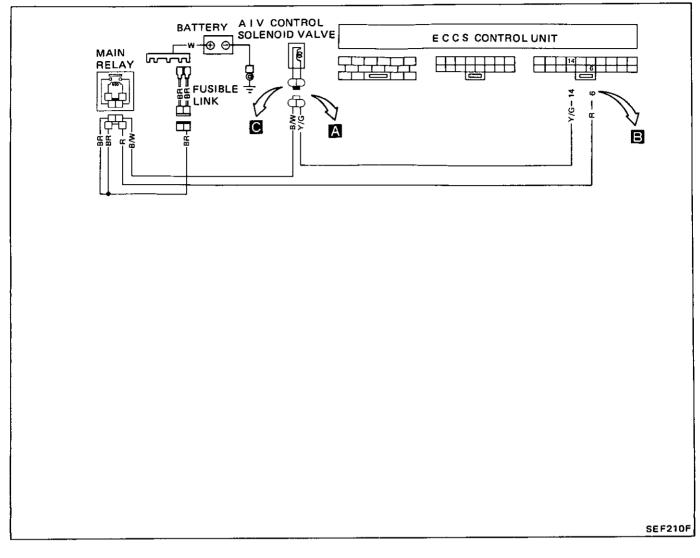




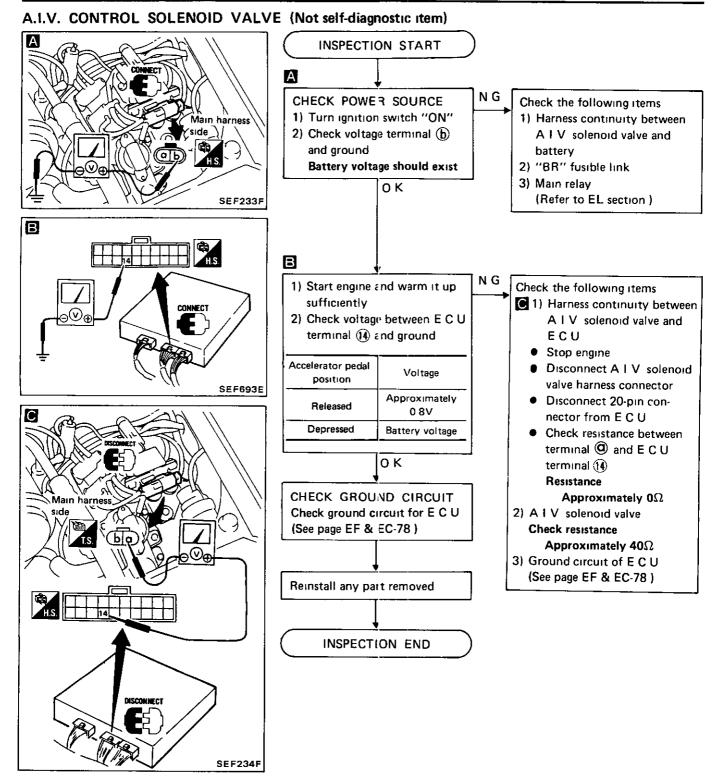

INJECTOR (Not self-diagnostic item)



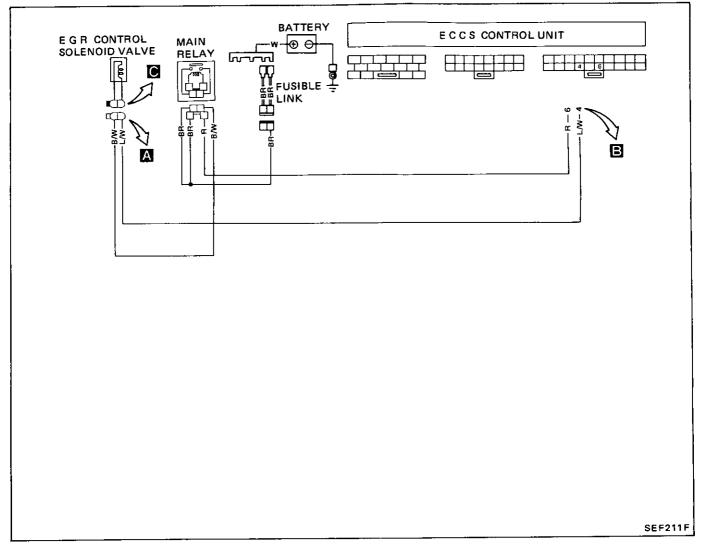
EF & EC-77

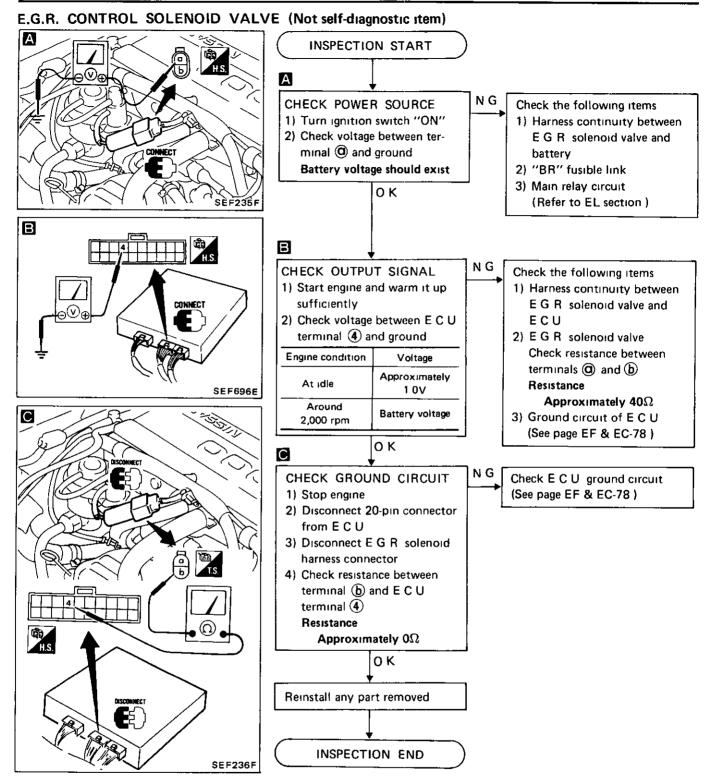


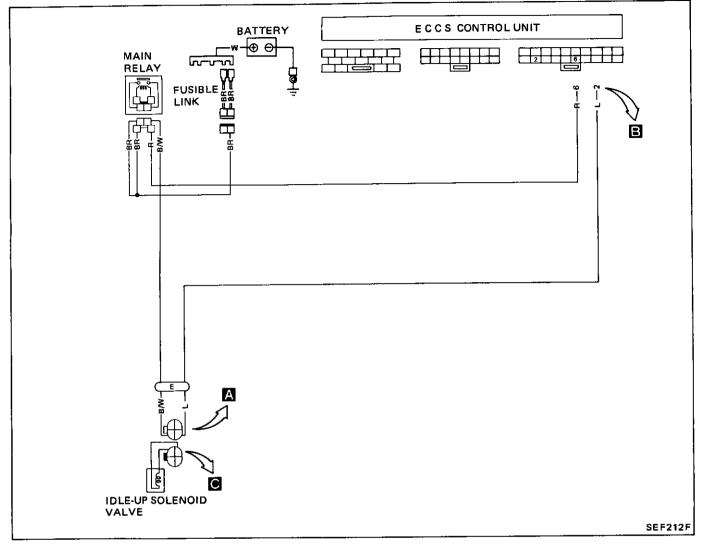
POWER SOURCE & GROUND CIRCUIT FOR E.C.U. (Not self-diagnostic item)



A.I.V. CONTROL SOLENOID VALVE (Not self-diagnostic item)

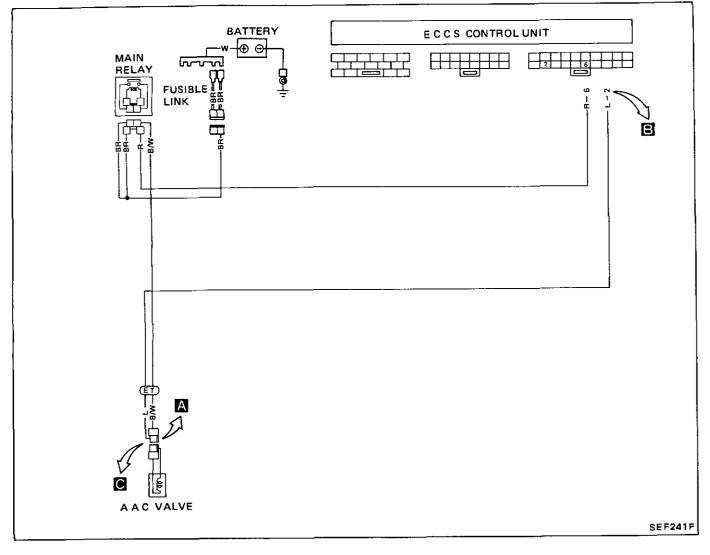


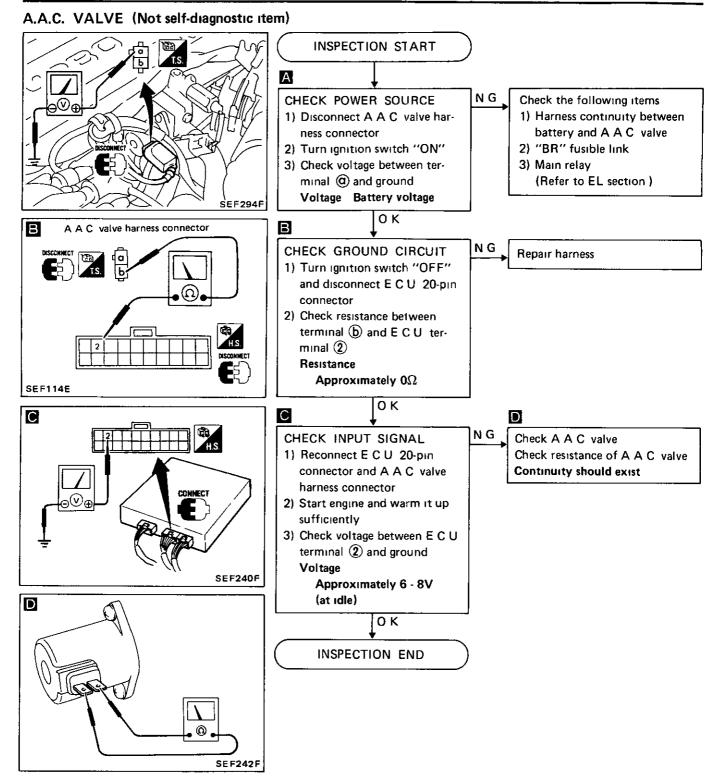




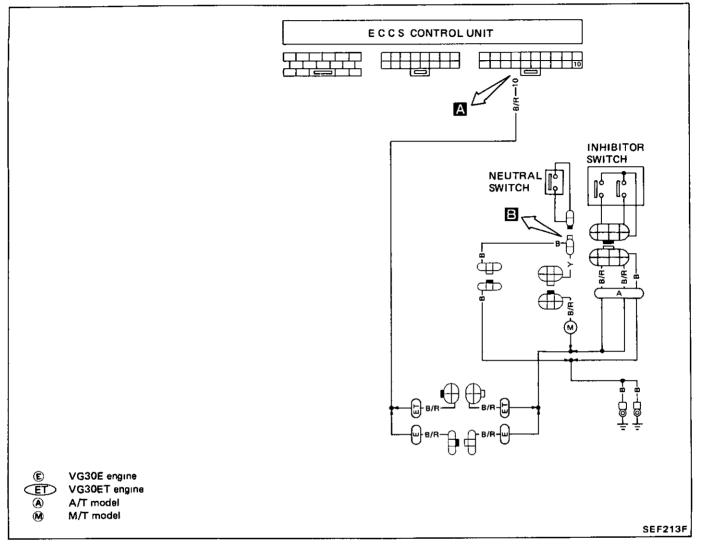
IDLE-UP SOLENOID VALVE (Not self-diagnostic item)

IDLE-UP SOLENOID VALVE (Not self-diagnostic item) Α INSPECTION START Α ΝG CHECK POWER SOURCE Check the following items 1) Harness continuity between 1) Turn ignition switch "ON" Idle-up solenoid valve and 2) Check voltage between terminal (b) and ground batterv Main harness 2) "BR" fusible link Battery voltage should exist. side 3) Main relay οк (Refer to EL section) В CHECK OUTPUT SIGNAL NG Check the following items 1) Turn ignition switch "OFF" C 1) Harness continuity between 2) Check voltage between Idle-up solenoid valve and terminal (2) and ground under ECU the following conditions Disconnect 20-pin con-3) Start engine nector from E C U For about 20 seconds after Check resistance between engine has started terminal (d) and E C U Voltage: 0.1 - 0.4V terminal (2) SEF242E 4) Turn load switches "ON" Resistance В - Lighting switch Approximately 0Ω Power steering oil pressure 2) Idle-up solenoid valve switch 3) Ground circuit of E C U Rear defogger switch (See page EF & EC-78) - Heater or air conditioner CONNECT switch Voltage 0.1 - 0.4V οк SEF240F Reinstall any part removed С INSPECTION END Main harness ude ар HS

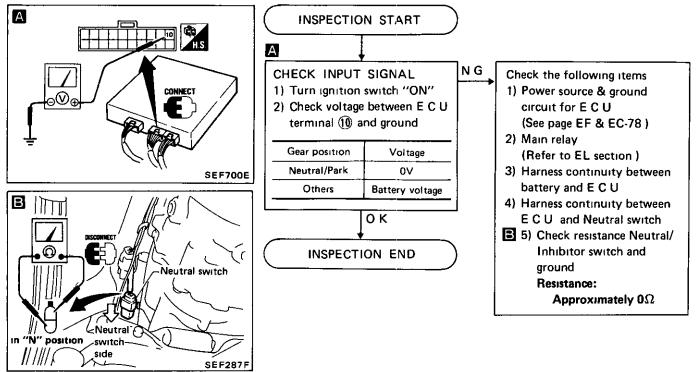

EF & EC-85

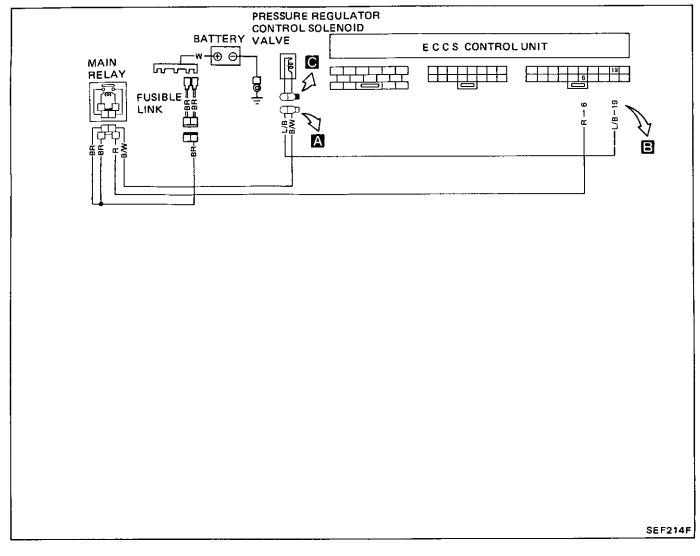

SEF718E

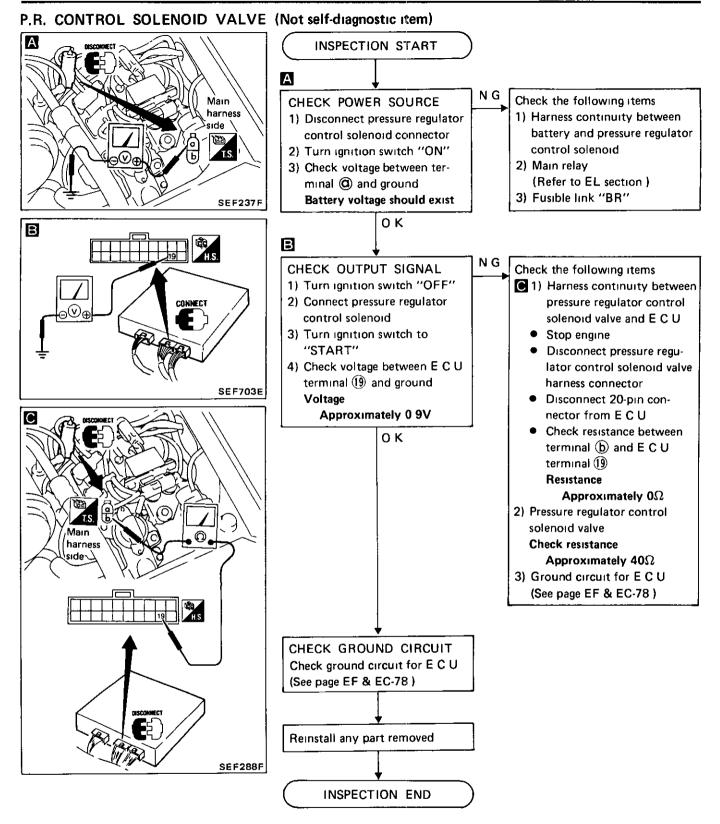
- - -



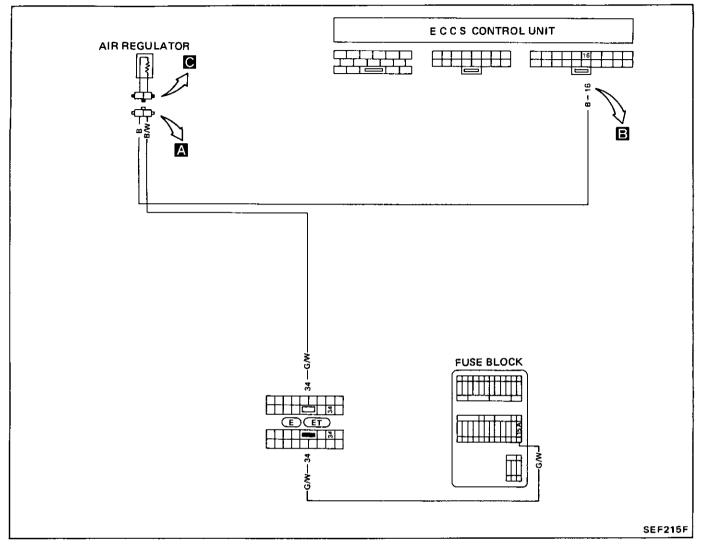
A.A.C. VALVE (Not self-diagnostic item)

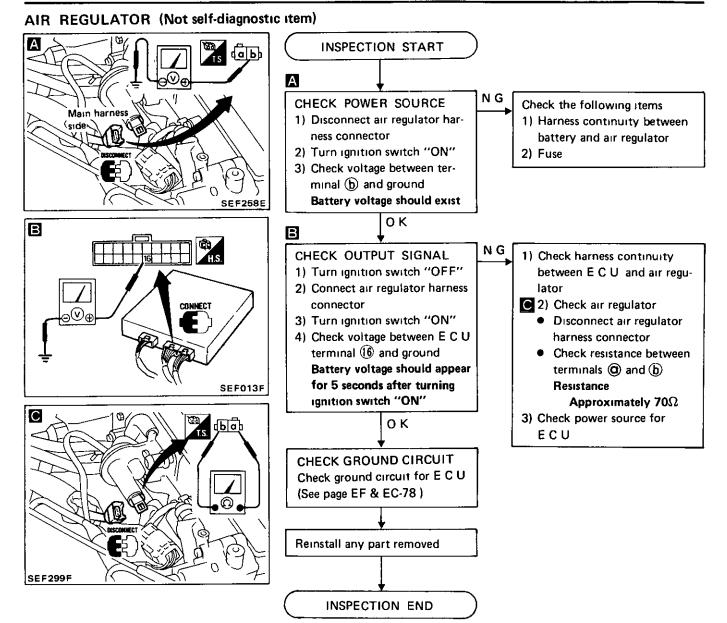


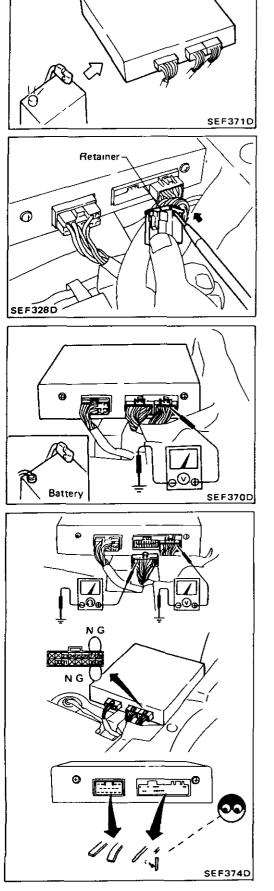

NEUTRAL/INHIBITOR SWITCH (Not self-diagnostic item)



NEUTRAL/INHIBITOR SWITCH (Not self-diagnostic item)




P.R. CONTROL SOLENOID VALVE (Not self-diagnostic item)



AIR REGULATOR (Not self-diagnostic item)

MEASUREMENT VOLTAGE OR RESISTANCE OF E C.U.

- 1 Disconnect battery ground cable
- 2 Disconnect 20- and 16-pin connectors from E C U

3 Remove pin terminal retainer from 20- and 16-pin connectors to make it easier to insert tester probes

- 4 Connect 20- and 16-pin connectors to E C U carefully
- 5 Connect battery ground cable.
- 6 Measure the voltage at each terminal by following "ECU inspection table"

CAUTION.

- a. Perform all voltage measurements with the connectors connected
- b. Perform all resistance measurements with the connectors disconnected
- c. Make sure that there is not any bend or break on E.C.U. pin terminal before measurements.
- d. Do not touch tester probes between terminals (2) and (3),
 (3) and (3).

E.C.U. inspection table

-- -

*Data are reference values

			*Data are reterence values
TERMI- NAL NO	ITEM	CONDITION	*DATA
2	Engine is running and gear position is in P or N (A/T) For about 20 seconds after starting engine When turning steering wheel Heater or air conditioner switch is "ON" Lighting switch position is "ON"		01-04V
		Engine is running Except the conditions shown above	BATTERY VOLTAGE (11 - 14V)
	AAC valve [VG30ET]	Engine is running At idle (After warming up)	60-80V
3	Ignition signal	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
4	E G R control solenoid valve	Engine is running after being warmed up High engine revolution Idle speed (Throttle valve switch "ON")	Approximately 1.0V
		Engine is running Low engine revolution	BATTERY VOLTAGE (11 - 14V)
5	Ignition signal (from power transistor)	Engine is running, Do not turn engine at high speed under no-load	05-20V
6	Main relay	Ignition switch "ON"	07-09V
8	Crank angle sensor (position signal)	At idle	2 0 - 3 0V
9	Start signal	Cranking	BATTERY VOLTAGE (11 - 14V)

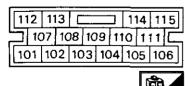
E.C.U. INPUT/OUTPUT SIGNAL INSPECTION

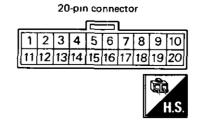
*Data are reference values.

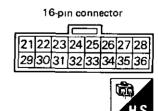
TERMI- NAL NO	ITEM	CONDITION	*DATA
10	Neutral switch (M/T) Inhibitor switch (A/T) [VG30ET]	Ignition switch "ON" Gear position is in Neutral or Parking	0V
		Ignition switch "ON" Any gear position except Neutral or Parking	4 0 - 5 0V
	Race engine at more than 1,500 rpm and then turn ignition switch "OFF" For 6 seconds	0V	
12	Air flow meter (Self-cleaning signal)	Race engine at more than 1,500 rpm and then turn ignition switch "OFF" For one second after 6 seconds	90-100V
14 A I V control valve	A I V control solenoid	Ignition switch "ON" -Release accelerator pedal (Throttle valve switch "ON")	07-09V
	valve	Ignition switch "ON" Depress accelerator pedal (Throttle valve switch "OFF")	BATTERY VOLTAGE (11 - 14V)
15	Fuel temperature sensor	At ıdle	0 - 5V Output voltage varies with engine temperature
16	Air regulator	Ignition switch "ON" For 5 seconds after turning ignition switch "ON"	01-03V
		Ignition switch "ON" After 5 seconds with ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
17	Crank angle sensor (Reference signal)	Engine is running, Do not turn engine at high speed under no-load	02-04V

*Data are reference values

TERMI- NAL NO	ITEM	CONDITION	*DATA
18	Throttle valve switch (Ignition switch "ON" Release accelerator pedal (Throttle valve switch "OFF")	90-100V
		Ignition switch "ON" Depress accelerator pedal (Throttle valve switch "ON")	ov
	Pressure regulator	Stop and restart engine after warming it up For 30 seconds	08-10V
19 control solenoid valve		Stop and restart engine after warming it up After 3 minutes	BATTERY VOLTAGE (11 - 14V)
20	Fuel pump relay	Ignition switch "ON" For 5 seconds after turning ignition switch "ON"	0 1 - 0 3V
		Ignition switch "ON" After 5 seconds with ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
22	Load signal	Engine is running and gear position is in P or N (A/T) —When turning steering wheel —Air conditioner switch is "ON" —Rear defogger switch is "ON" —Lighting switch position is "ON"	BATTERY VOLTAGE (11 - 14V)
		Engine is running Except the conditions shown above	0V
23	Cylinder head temperature sensor	Engine is running	0 - 5 0V Output voltage varies with engine temperature
24	Exhaust gas sensor	Engine is running After warming up sufficiently	0 - Approximately 1 0V
25	Throttle valve switch (🕀 side)	Ignition switch "ON"	9 0 - 10.0V


E.C.U. INPUT/OUTPUT SIGNAL INSPECTION


*Data are reference values.

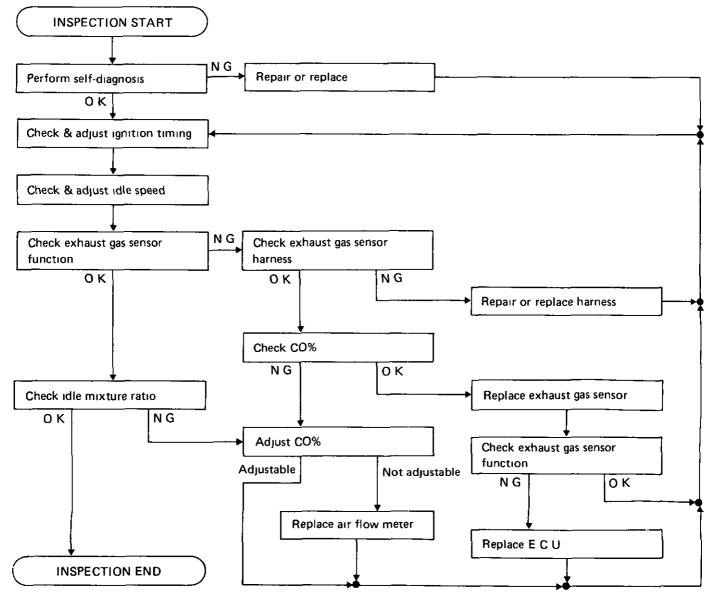

TERMI- NAL NO	ITEM	CONDITION	*DATA
27 35	Power source for E C U	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
29	Vehicle speed sensor	Ignition switch "ON" While rotating rear wheel slowly	0 or 7 4V
30	Air flow meter	Ignition switch "ON"	2 0 - 4 0V
31	Air quantity signal	Race engine from idle to 3,000 rpm	20-40V
34	Ignition switch signal	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
101 102 103 104 105 106 114	Injector	Ignition switch "OFF"	BATTERY VOLTAGE (11 - 14V)
		Ignition switch "ON" For 5 seconds after turning ignition switch "ON"	01-03V
108	Fuel pump	Ignition switch "ON" After 5 seconds with ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)
115	Exhaust gas sensor heater	Ignition switch "ON"	BATTERY VOLTAGE (11 - 14V)

VG30 PIN CONNECTOR TERMINAL LAYOUT

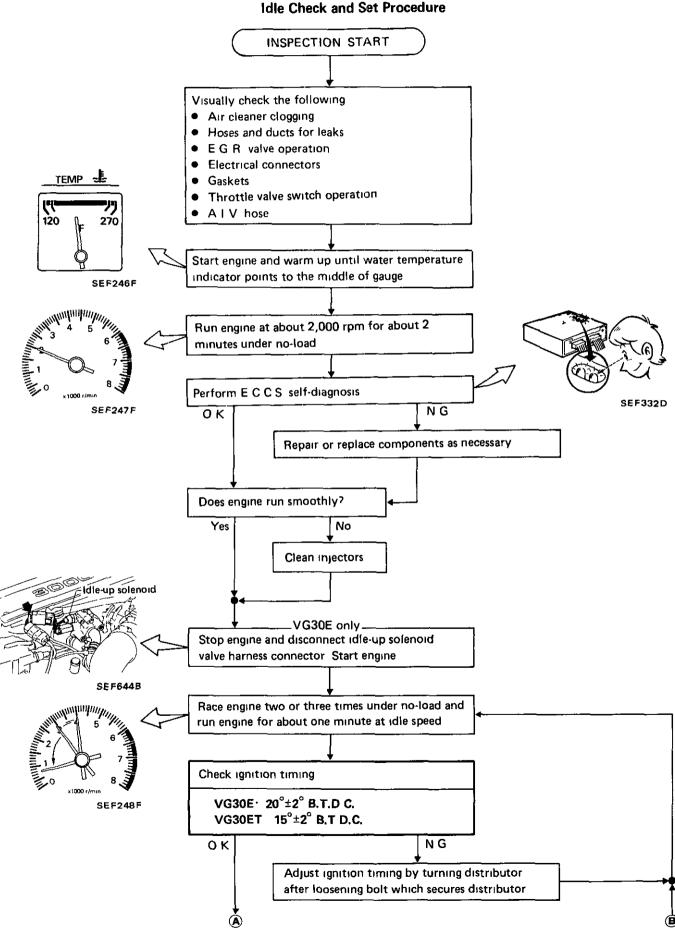
15-pin connector

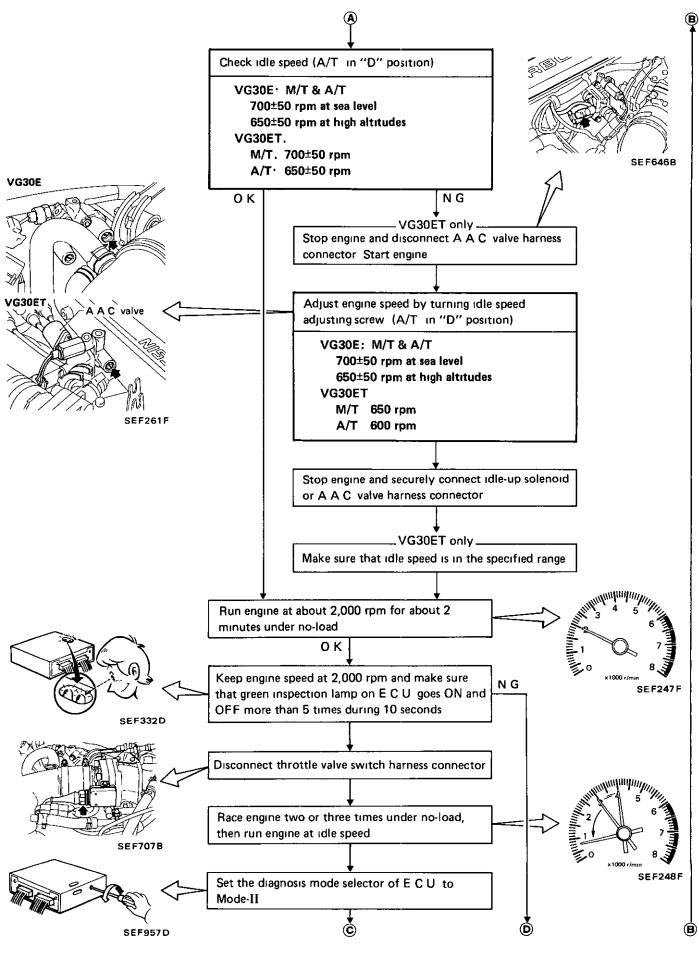
SEF262F

PREPARATION

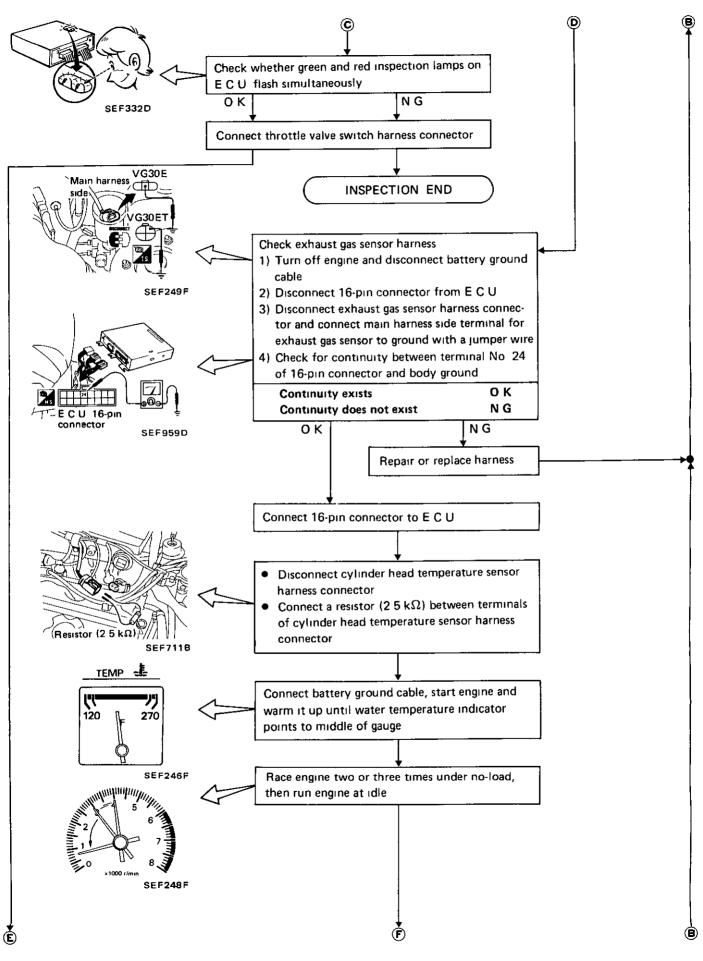

- 1. Make sure that the following parts are in good order.
- Battery
- Ignition system
- Engine oil and coolant levels
- Fuses
- E.C.C.S. harness connectors
- Vacuum hoses
- Air intake system (oil filler cap, oil level gauge, etc.)
- Fuel pressure
- A.I.V. hose
- Engine compression
- E.G.R. valve operation
- Throttle valve

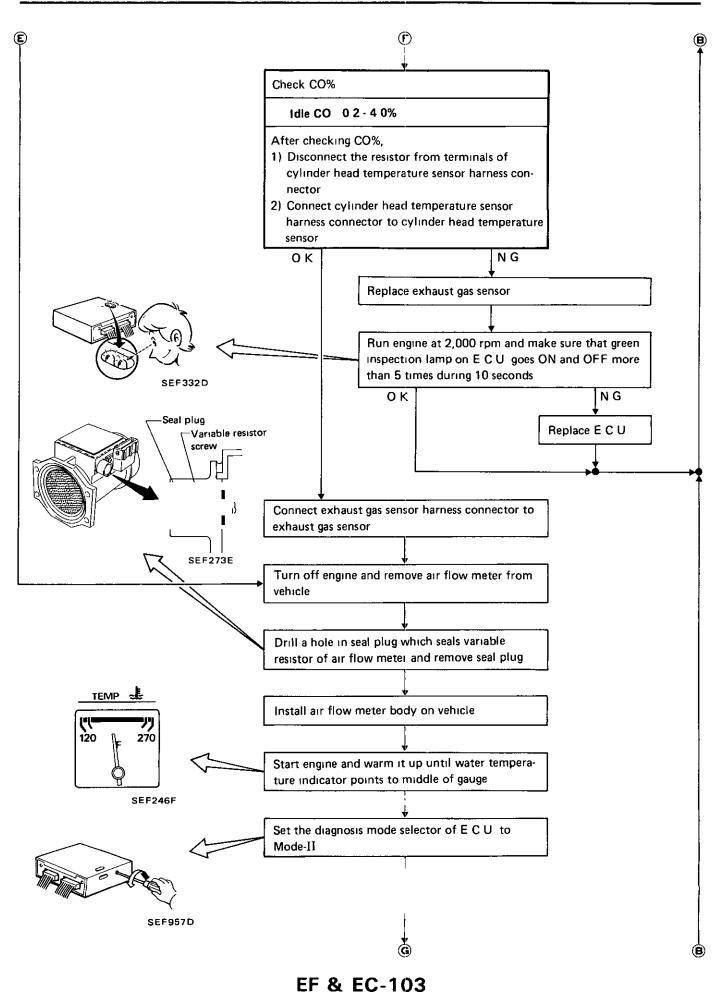
Overall inspection sequence

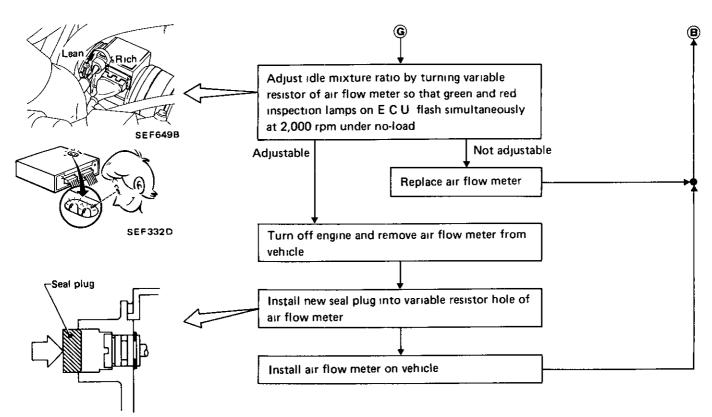

- 2 On air conditioner equipped models, checks should be carried out while the air conditioner is "OFF".
- 3. On automatic transmission equipped models, when checking idle rpm, ignition timing and mixture ratio, checks should be carried out while shift lever is in "D" position.
- 4 When measuring "CO" percentage, insert probe more than 40 cm (15.7 in) into tail pipe.


WARNING:

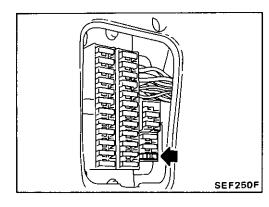
- a. When selector lever is shifted to "D" position, apply parking brake and block both front and rear wheels with chocks.
- b. Depress brake pedal while racing the engine to prevent forward surge of vehicle.
- c. After the adjustment has been made, shift the lever to the "N" or "P" position and remove wheel chocks.



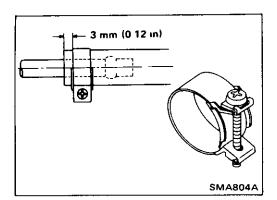

EF & EC-99

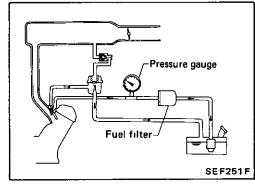


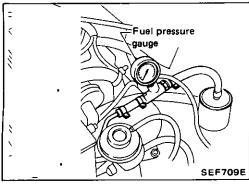
EF & EC-101



SEF713B


Releasing Fuel Pressure


WARNING


Before disconnecting fuel line, release fuel pressure from fuel line to eliminate danger.

- 1. Remove fuse for fuel pump.
- 2 Start engine
- 3 After engine stalls, crank engine two or three times to make sure that pressure is released
- 4 Turn ignition switch off and install the fuse

Erase the memory (Code No. 22) of the self-diagnosis in E.C.C.S. control unit

Fuel Pressure Check

- a. When reconnecting fuel line, always use a new clamp.
- b. Tighten the clamp so its end is 3 mm (0.12 in) from the hose end.
- c. Make sure that the screw of the clamp does not contact with any adjacent parts.
 - 🖸 : Fuel hose clamps

(0.10 - 0.15 kg-m, 0.7 - 1.1 ft-lb)

- d. Disconnect pressure regulator control solenoid valve harness connector.
- e. Use Pressure Gauge to check fuel pressure.

- 1 Release fuel pressure to zero
- 2 Disconnect fuel hose between fuel filter and fuel tube (engine side).
- 3 Install pressure gauge between fuel filter and fuel tube

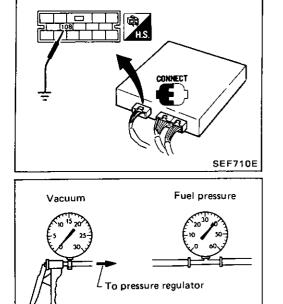
FUEL SYSTEM INSPECTION

Fuel Pressure Check (Cont'd)

- 4. Start engine and check for fuel leakage.
- 5 Read the indication of fuel pressure gauge
 - At idling:

Approximately 206 kPa (2 1 kg/cm², 30 psi) The moment accelerator pedal is fully depressed:

[VG30E]

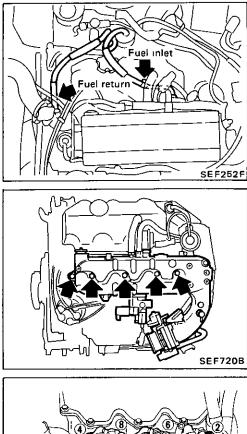

Approximately 255 kPa

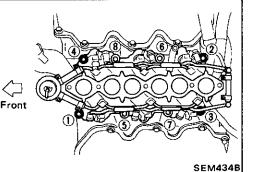
(2.6 kg/cm² , 37 psi)

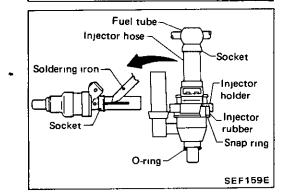
[VG30ET]

Approximately 304 kPa

- (3.1 kg/cm² , 44 psı)
- 6 Stop engine and disconnect fuel pressure regulator vacuum hose from intake collector
- 7. Plug intake collector with a rubber cap
- 8. Connect variable vacuum source to fuel pressure regulator
- 9. Jump No. 108 connector of E C U, to body ground,


SEF718B


10. Turn ignition switch to "ON" and read the indication of fuel pressure gauge as vacuum is changed


Vacuum kPa (mmHg, ınHg)	Fuel pressure kPa (kg/cm ² , ps1)
0 (0, 0)	248 1 - 255 0 (2 53 - 2 60, 36 0 - 37 0)
16 9 (127, 5 00)	227 5 - 241 3 (2 32 - 2 46, 33 0 - 35 0)
33 9 (254, 10 00)	213 8 - 220 7 (2 18 - 2 25, 31 0 - 32 0)
50 8 (381, 15 00)	200 1 - 206 9 (2 04 - 2 11, 29 0 - 30 0)
67 7 (508, 20 00)	179 5 - 193 2 (1 83 - 1 97, 26 0 - 28 0)

 Fuel pressure should decrease as vacuum increases. If results are unsatisfactory, replace fuel pressure regulator.

FUEL SYSTEM INSPECTION

Injector Removal and Installation

- 1 Release fuel pressure to zero
 - Disconnect the following from intake collector •
- Air duct •

2

- Accelerator wire
- Blow-by hoses
- Air regulator hose
- Intake collector cover

Harness clamps

Harness connectors

- Water hoses
- E G R, tube
- **Disconnect fuel hoses** 3
- Remove intake collector, 4

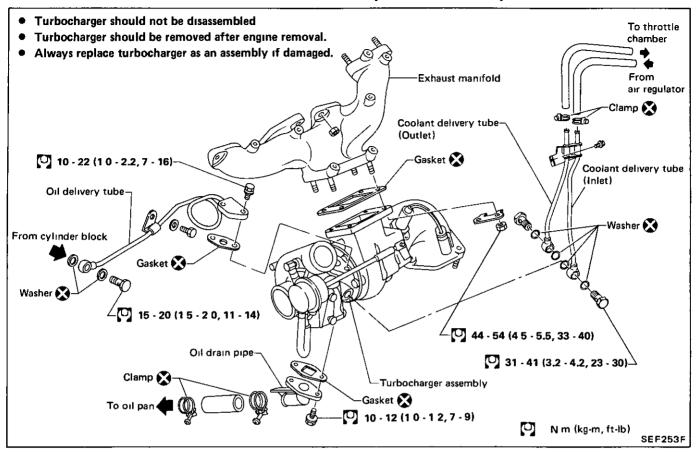
- 5. Remove bolts securing fuel tube
- Remove bolts securing injectors and remove injectors, fuel 6 tubes and pressure regulator as an assembly.

- Remove fuel hose
- 1) Heat sharp knife for 15 minutes. Cut into hose braided reinforcement from mark to socket end and fuel tube end

Do not allow sharp knife to cut all the way through the hose and touch injector tail piece.

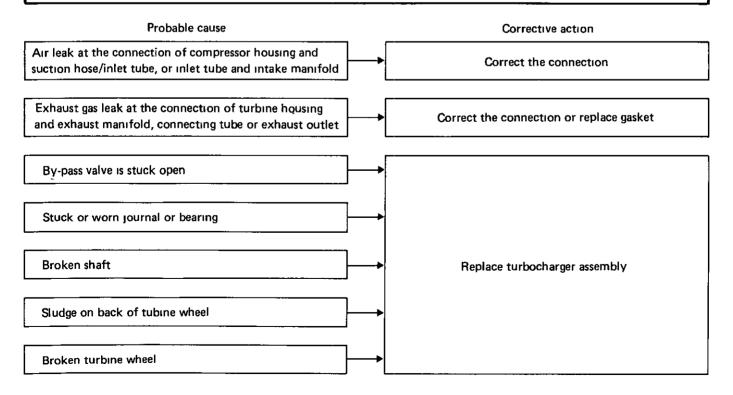
2) Then pull rubber hose out with hand.

Never place injector in a vise when disconnecting rubber hose.

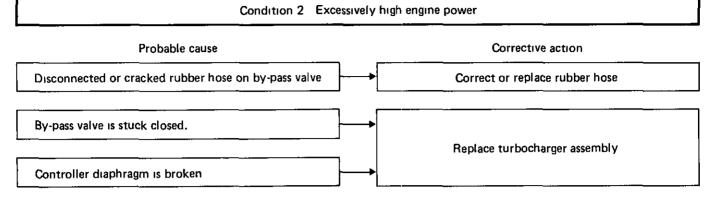

- 8. Install fuel hose as follows
- 1) Clean exterior of injector tail piece and fuel tube end.
- 2) Wet inside of new rubber hose with fuel.
- 3) Push end of rubber hose with hose sockets onto injector tail piece and fuel tube end by hand as far as they will go

Clamp is not necessary at the connections.

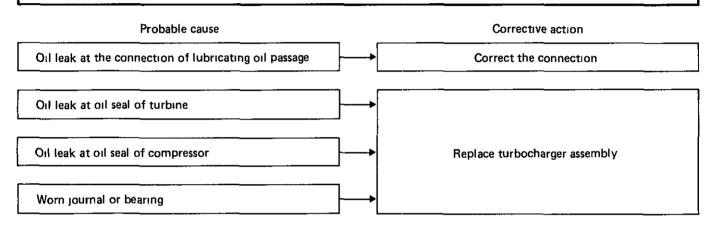
CAUTION

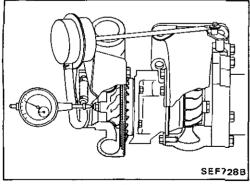

After properly connecting fuel hose to injector and fuel tube, check connection for fuel leakage

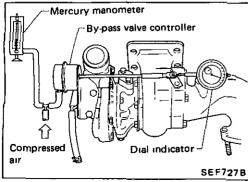
Disassembly and Assembly


Inspection

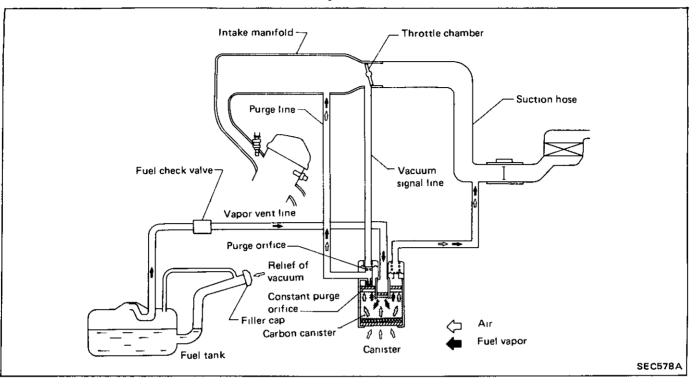
Condition 1 Low engine power




TURBOCHARGER INSPECTION


Inspection (Cont'd)

Condition 3 Excessively high oil consumption or exhaust shows pale blue smoke

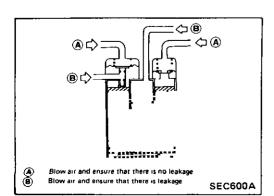


- 1 Inspect turbine and compressor wheel as follows:
- Visually check for cracks, clogging, deformity or other damage.
- Revolve wheels to make sure that they turn freely without any abnormal noise or friction.
 - Measure play in axial direction. Play (axial direction): 0.013 - 0.091 mm (0.0005 - 0.0036 in)
- 2 Check operation of by-pass valve controller.
- Move by-pass valve to make sure that it is not sticking or scratched.
- Measure rod end play of the by-pass valve controller.

Do not apply more than 667 kPa (500 mmHg, 19.69 inHg) pressure to controller diaphragm.

By-pass valve controller stroke/pressure: 0.38 mm (0.0150 in)/51.3 - 56.7 kPa (385 - 425 mmHg, 15.16 - 16.73 inHg)

EVAPORATIVE EMISSION CONTROL SYSTEM

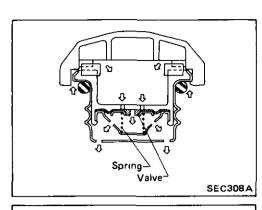

Description

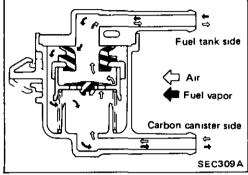
The evaporative emission control system is used to reduce hydrocarbons emitted to the atmosphere from the fuel system This reduction of hydrocarbons is accomplished by activated charcoals in the carbon canister

The fuel vapor from the sealed fuel tank is led into the canister which contains activated carbon and the vapor is stored there when the engine is not running

The canister retains the fuel vapor until the canister is purged by the air drawn through the bottom of the canister to the intake manifold when the engine is running. When the engine runs at idle, the purge control valve is closed

Only a small amount of stored vapor flows into the intake manifold through the constant purge orifice. As the engine speed increases, and the throttle vacuum rises higher, the purge control valve opens and the vapor is sucked into the intake manifold through both the main purge orifice and the constant purge orifice.




Inspection CARBON CANISTER

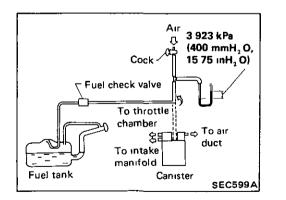
Check carbon canister as follows

- Blow air and ensure that there is no leakage.
- (B) Blow air and ensure that there is leakage

EVAPORATIVE EMISSION CONTROL SYSTEM

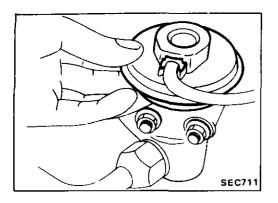
Inspection (Cont'd)

FUEL TANK VACUUM RELIEF VALVE


- 1 Wipe clean valve housing
- 2 Inhale air through the cap A slight resistance accompanied by valve clicks indicates that valve is in good mechanical condition. Note also that, by further inhaling air, the resistance should be disappeared with valve clicks.
- 3 If valve is clogged, or if no resistance is felt, replace cap as an assembly

FUEL CHECK VALVE

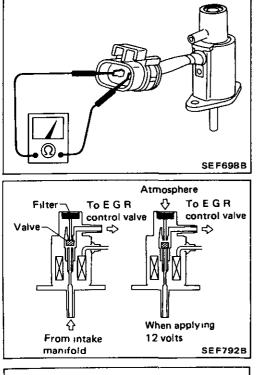
- Blow air through connector on fuel tank side
 A considerable resistance should be felt and a portion of air flow be directed toward the canister
- 2 Blow air through connector on the canister side Air flow should be smoothly directed toward fuel tank
- 3 If fuel check valve is suspected of not being properly functioning in steps 1 and 2 above, replace it

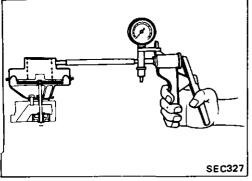

VAPOR VENT LINE

- 1 Check hoses and fuel tank filler cap
- 2 Disconnect the vapor vent line connecting carbon canister to fuel tank

- 3 Connect a 3-way connector, a manometer and a cock (or an equivalent 3-way charge cock) to the end of the vent line
- 4 Supply fresh air into the vapor vent line through the cock little by little until pressure becomes 3 923 kPa (400 mmH₂ O, 15 75 inH₂ O)
- 5 Shut the cock completely and leave it unattended
- 6 After 2.5 minutes, measure the height of the liquid in the manometer
- 7 Variation in height should remain at 0 245 kPa (25 mmH₂ O, 0 98 inH₂ O)
- 8 When filler cap does not close completely, the height should drop to zero in a short time
- 9 If the height does not drop to zero in a short time when filler cap is removed, the cause is a blocked hose or a clogged fuel check valve

In case the vent line is blocked, the fuel tank is not vented properly causing insufficient deliver of fuel to engine, or vapor lock It must, therefore, be repaired.

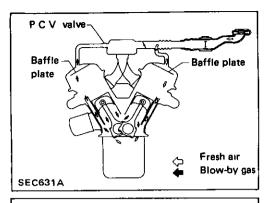


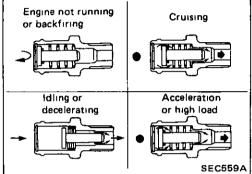

ENTIRE SYSTEM

Ensure that E G R. system is functioning properly by placing your finger on E.G R control valve diaphragm.

Make sure that E.G R control valve operates as follows.

Conditions	E G R control solenoid	EGR system	
 Engine starting Throttle valve switch "ON" Low engine temperature High engine temperature High engine speed With heavy load 	ON	Does not operate	
Except above	OFF	Operates	


E.G.R. CONTROL SOLENOID VALVE


 Check the solenoid value for electric continuity, after disconnecting the harness connector Resistance: 30 - 40Ω

- 2. Check the solenoid valve for normal operation as shown. CAUTION:
- Be sure to connect \oplus terminal of battery with white harness of solenoid valve.
- Perform E.G.R. circuit test. (See page EF & EC-82.)
- Perform E.C.U. input/output test. (See page EF & EC-94.)

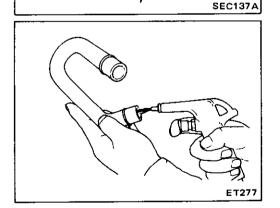
E.G.R. CONTROL VALVE

- 1. Supply the E.G.R control valve with vacuum using a handy vacuum pump.
- 2 Place a finger on the diaphragm of the valve, and make sure that the diaphragm lifts up and down in response to the vacuum leading to the valve.

Description

The fuel vapor from the sealed fuel tank is led into the canister which contains activated carbon. The vapor is stored there when the engine is not running

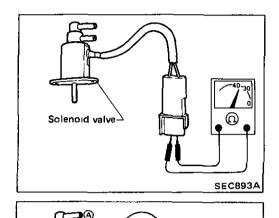
The canister retains the fuel vapor until the canister is purged by the air drawn through the purge line to the intake manifold when the engine is running. When the engine is at idle, the purge control valve is closed.


Only a small amount of purged air flows into the intake manifold through the constant purge orifice. As the engine speed increases, and the throttle vacuum rises higher the purge control valve opens and the vapor is drawn into the intake manifold through both the purge orifice and the constant purge orifice.

Inspection P.C.V. VALVE

With engine running at idle, remove ventilation hose from P.C V. valve, if valve is working properly a hissing noise will be heard as air passes through it and a strong vacuum should be felt immediately when a finger is placed over valve inlet

VENTILATION HOSE


- 1 Check hoses and hose connections for leaks
- 2 Disconnect all hoses and clean with compressed air If any hose cannot be freed of obstructions, replace

VISUAL CHECK

Check the hoses and tubes for loosening, flatting damage or faulty connections, and each part for proper installation

Replace, if necessary

Θ

(B)

¥

© \ Solenoid valve

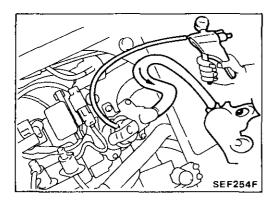
A I.V CONTROL SOLENOID

Subject the solenoid valve to independent inspection, after disconnecting the harness connector and all the vacuum hoses 1) Check it for electric continuity

Resistance Approximately 40Ω

2) Check the solenoid valve for normal operation Supply it with battery voltage, and check whether there is continuity between ports A, B and C

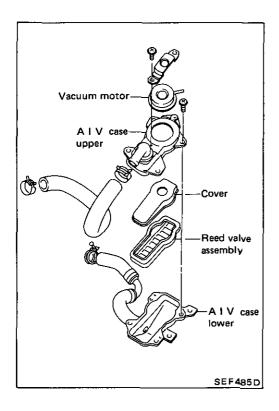
Solenoid valve	OFF	ON
Continuity	B-C	A-B


CAUTION

₽ 0

Battery

SEC549A


- Be sure to connect \oplus terminal of battery with white harness of solenoid valve.
- Perform A.I.V. circuit test. (See page EF & EC-80.)
- Perform E.C.U. input/output test. (See page EF & EC-94.)

A.I.V. UNIT

- 1 Disconnect vacuum hose leading to vacuum motor and set a handy vacuum pump there
- 2 Disconnect hose between A.I.V. unit and air cleaner
- 3 Subject A.I.V. unit to inspection in the following way Connect suitable hose to A.I.V. unit and try to blow A.I.V. unit through the hose, when vacuum is lead to vacuum motor and when no vacuum exists

	Vacuum	No vacuum	Parts condition
	Yes	No	ОК
Can you blow?	No	Yes	NG

4 If the inspection shows N G, disassemble the A I V case and check such parts as the reed valve, the vacuum motor, and the connecting hoses

SERVICE DATA AND SPECIFICATIONS (S.D.S.)

Fuel pump Cut off discharge pressure kPa (kg/cm ² , psi)	422 - 490 (4 3 - 5 0, 61 - 71)
Pressure regulator Regulated pressure kPa (kg/cm², psı)	250 (2 55, 36 3)
Air regulator Air flow amount [at 20°C (68°F)] m ³ (cu ft)/hr	14 5 (512)

General Specifications

Inspection and Adjustment

Item	
Fuel pressure At idle kPa (kg/cm², psi)	Approximately 206 (2 1, 30)
The moment accelerator pedal is fully depressed kPa (kg/cm², psi) VG30E	Approximately 255 (2 6, 37)
VG30ET	Approximately 304 (3 1, 44)
Air flow meter Voltage between terminals B and D	2 - 4V
Cylinder head temperature sensor and fuel temperature sensor Thermistor resistance at 20°C (68°F)	23-27kΩ
at 50°C (122°F)	077-087Ω
at 80°C (176°F)	0 30 - 0 33Ω
Throttle valve switch Engine speed when idle switch is turned from "OFF" to "ON"	ldle speed + 250 rpm allowance ±150 rpm

Tightening Torque

Unit	Nm	kg-m	ft-lb
Throttle chamber securing bolt	18 - 22	18-22	13 - 16
Intake collector cover bolt	6 - 8	06-08	43-58
Intake collector bolt	18 - 22	18-22	13 - 16
Cylinder head temperature sensor	12 - 16	12.16	9 - 12
Exhaust gas sensor (VG30E)	40 - 50	41-51	30 - 37
(VG30ET)	18 - 24	18-24	13 - 17
EGR control valve	18 - 23	18-23	13 - 17
EGR tube	34 - 44	35-45	25 - 33
Fuel hose clamp	10-15	0 10 - 0 15	07-11

Courtesy Nissan 1777 North Central Expressway Richardson, TX 75080 (800)527-1909

NISSAN FACTORY SERVICE MANUAL CDROM END-USER LICENSE AGREEMENT

NOTICE TO USER: THIS IS A CONTRACT. BY PURCHASING AND USING THE SERVICE MANUAL ON CDROM, YOU ACCEPT ALL THE TERMS AND CONDITIONS OF THIS AGREEMENT.

This End User License Agreement accompanies the Service Manual on CDROM product and related explanatory materials. Please read this Agreement carefully. By purchasing and using the Service Manual on CDROM, you are implying that you have carefully read, agree with, and will adhere to the conditions set forth in this agreement. If you do not wish to accept the terms of this End User Agreement please do not use the Service Manual on CDROM. You will not be permitted to use the Service Manual on CDROM without consenting to this end user agreement.

Upon your acceptance of this Agreement, Courtesy Nissan grants to you a nonexclusive license to use the Service Manual on CDROM, provided that you agree to the following:

USE OF SOFTWARE

You may install the contents of the CD on a hard disk or other storage device for personal use only. Each Service Manual on CDROM comes with a single user license. Under no circumstances should the contents of the Service Manual CDROM be placed on a server for purposes of distributing or allowing access to the material over a network.

COPYRIGHT AND TRADEMARK RIGHTS

The Service Manual CDROM is owned by Courtesy Nissan and its structure and organization, all graphics and coding are considered intellectual property of Courtesy Nissan. The Service Manual on CDROM is also protected by United States Copyright Law and International Treaty provisions. This Agreement does not grant you any intellectual property or resale rights to the Service Manual CDROM.

RESTRICTIONS

You agree not to modify, adapt, translate, reverse engineer, decompile or disassemble the PDF file on the Service Manual CDROM. The Service Manual on CDROM is licensed and distributed by Courtesy Nissan for single user utilization of its contents only. Licensed users will be permitted to use the contents of the Service Manual CDROM for multimedia presentation to an audience from a single machine using a large display or projection device but the Service Manual CDROM may not otherwise be distributed, sold to or made accessible to multiple users.

NO WARRANTY

The software is being delivered to you AS IS and Courtesy Nissan makes no warranty as to its use or performance. COURTESY NISSAN DOES NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING THE SERVICE MANUAL CDROM OR DOCUMENTATION, NOR MAKES ANY WARRANTIES, EXPRESS OR IMPLIED, AS TO NONINFRINGEMENT OF THIRD-PARTY RIGHTS, MERCHANTABILITY, OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL COURTESY NISSAN BE LIABLE TO YOU FOR ANY CONSEQUENTIAL, INCIDENTAL, OR SPECIAL DAMAGES FOR ANY REASON.

Courtesy Nissan 1777 North Central Expressway Richardson, TX 75080 (800)527-1909

GOVERNING LAW AND GENERAL PROVISIONS

This Agreement will be governed by the laws of the State of Texas, USA, excluding the application of its conflicts of law rules. This Agreement will not be governed by the United Nations Convention on Contracts for the International Sale of Goods, the application of which is expressly excluded. If any part of this Agreement is found void and unenforceable, it will not affect the validity of the balance of the Agreement, which shall remain valid and enforceable according to its terms. You agree that the Service Manual on CDROM will not be shipped, transferred or exported into any country or used in any manner prohibited by the United States Export Administration act or any other export laws, restrictions or regulations. This Agreement shall automatically terminate upon failure by you to comply with its terms. This Agreement may only be modified in writing signed by and authorized officer for Courtesy Nissan.

Courtesy Nissan 1777 North Central Expressway Richardson, TX 75080 USA

YOUR ACCEPTANCE OF THE FOREGOING AGREEMENT IS IMPLIED UPON PURCHASING AND USING THE SERVICE MANUAL CDROM.